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1.  Problem and Denotations 

The mathematical interrelationships for pressure loss and 

heat transfer in smooth tubes can be considered as having been 

clarified with sufficient accuracy.  While the pressure loss 

of rough tubes traversed by flow has been known for some time, 

it has recently been possible to treat pressure loss and heat 

transfer in a uniform manner during air flow through rough 

tubes and even to derive a theoretical heat transfer equation 

for rough tubes. [1]  The most remarkable result of this in- 

vestigation consists of the fact that the heat transfer depends 

only on the resistance coefficient of the tube and that it 

does not depend additionally on the type and arrangement of 

the roughness elements.  In this connection, W. Nunner [l] 

1) Dissertation by permission of the Technical College 

in Hannover, in 1957.  At this point the author wishes to 

thank Prof. Dr. (Eng.) H. Glaser for instigating this study 

and for his valuable advice as well as the German Research 

Association [Deutsche Forschungsgemeinschaft] for making the 

financial means available for this investigation.  The ex- 

perimental results were reported in outline form at the 

meetings of the VDI auxiliary for heat exchangers and condensers 

on April 25, 1955 in Bad Homburg and on April 13, 1956 in 

Bingen. 
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already referred to the difference existing between roughnesses 

and turbulence incorporations, which was not taken into suffi- 

cient consideration previously because it is hardly possible 

to separate both concepts sharply from each other from the start. 

The internal heat transfer coefficient in a tube traversed 

by flow can be artificially increased by means of turbulence 

promoters.  But this is only suitable if the coefficient of 

heat transmission of a heat transmitter is mainly determined 

by the internal heat transfer coefficient.  This will be true, 

for example, if the external heat transfer coefficient is 

large (such as during condensation or fluid flow), if only 

a small temperature drop occurs in the tube wall, and if 

relatively unfavorable conditions for heat transfer prevail 

inside the tube (for example, during gas flow). 

The influence of turbulence promoters (wire helices, 

helically twisted metal sheets, propeller-shaped baffles, fin- 

like insertions, various packing materials) on heat transfer 

has been investigated several times already.  Usually water 

served as the flow medium.  Depending on the form and arrange- 

ment of the turbulence promoters as well as on the average 

flow rate in the tube, results were more or less favorable. 

However, generally valid theories are not yet available. 

For this reason, further experiment; on the basis of uniform 

points of reference seemed desirable, especially for the pur- 

pose of clarifying the relation between the transmitted heat 

and the pressure loss in the presence of artificially turbulent 

flow. 

Heat transfer and pressure loss had to be determined for 

each system of turbulence producers, since this is the only 

way in which an unobjectionable evaluation can be attempted. 

In addition, velocity and temperature ranges were determined 



for a few systems of turbulence producers, resulting in a 

better insight into the mechanics of heat transfer. 

One must differentiate between active and passive turbulence 

promoters [2].  Active turbulence promoters participate them- 

selves in the heat transfer to a considerable extent; there- 

fore they represent a part of the heat-transmitting area. 

Passive turbulence inserts only influence the heat transmission 

by causing the flow to be turbulent.  Such inserts have been 

in use almost exclusively until now and have also been utilized 

in the experiments described below, because in this manner a 

large number of different forms and arrangements can be in- 

vestigated with a small amount of effort.  If certain passive 

turbulence promoters have been recognized as especially suit- 

able, then the heat transfer can be improved for certain heat 

transmitters in practical use (perhaps even subsequently). 

The denotations utilized most frequently are as follows: 

a =  A/o c   thermal conductivity coefficient 

A-j- magnitude of turbulent exchange of the impulse 

A magnitude of turbulent exchange of the heat 

c specific heat at constant pressure 

d internal diameter of the tube 

d width of a metal sheet 

d diameter of a disc 

f free flow cross section 

f* free flow cross section referred to the weight 
rate of flow 

F internal tube surface 

G mass weight rate of flow 

h amplitude for helical baffles 

H required heat surface 

K height of orifice and ring, respectively 

3 



1 distance of an insert in the direction of flow 

1£ hydrodynamic distance of intake 

L length of experimental tube 

L' distance between two turbulence promoters 

m exponent 

m* aperture ratio 

N delivery efficiency of a blower 

Nu = oc d/A.  Nusselt coefficient 

P) P^  P     static pressure and pressure drop, respectively, 
in the tube 

Pe = RePr Peclet coefficient 

Pr Prandtl coefficient 

q heat flux density 

Q. heat flow 

r tube radius 

R gas constant 

Re = w d/V Reynolds number 

Rejcr critical Reynolds number 

t temperature in C 

T absolute temperature 

U =yft\ftZ rate of shear stress 

w average rate of flow 

x moisture content 

distance from wall 

dimensionless wall distance 

average and local heat transfer coefficient, 
respectively 

performance figures 

relative space volume of a packed tube 

dynamic viscosity 

derived over-temperature 

coefficient of thermal conductivity 
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Y> kinematic viscosity1 

o density 

"£ shear stress 

ul coefficient of resistance 

2.  Fundamentals 

2.1  Pressure Loss and Intake Distance 

In a fully formed, isothermal and incompressible flour 

through horizontal tubes the pressure loss /\p over tube length 

L is only caused by wall friction.  According to definition, 

the following is true for the coefficient of resistance Y : 

A P d 
Yow 

where w is the average rate of flow, 9 the density of the 

flowing medium and d is the dianeter of the tube.  More gener- 

ally, the definition equation for the coefficient of resistance 

of gases, neglecting static pressures in the tubing, is as 

follows: 

f\  P P,T 
4J= [=L^- 2 ln ( 12) ] J (2) 

with T as the absolute temperature, p the static pressure, 

m as the index of an average value over the total flow path L, 

and with indices 1 and 2 as values at the start and at the 

end of the tube distance.  Equations (1) and (2) are used not 

only for smooth tubes and channels, but also for those with 

roughnesses and turbulence inserts, the body resistance of 

which also causes pressure loss in addition to wall friction. 

Furthermore, /\p also contains an accelerating component 

for profile formation in the intake distance 1„, which is 

necessary for the formation of the complete velocity distribution, 



According to measurements of J. Nikuradse [3,4], the following 

is valid in turbulent flow independently of bhe Reynolds number 

Re--for smooth tubes: 

and for rough tubes 

1_ ** 50 d (3) 
E 

L » 40 d (4) 

For laminar flow, the value 

1^*0.065 d Re (5) 
E 

is most valid for smooth as well as rough walls according to 

J. Boussinesq [5]. 

2.2  Laws of Resistance 

With Re = w d/»> for the Reynolds number of the tube, 

in which vJ denotes the kinematic viscosity, the following 

laws of resistance are valid: 

^ = 64/Re (6) 

for fully developed laminar flow in a smooth tube of cross 

section, 

«|l = (100 Re)"1/4 (7) 

for the fully developed turbulent flow according to H. Blasius 

[6] in the range Re < 10  as well as 

 }-  = 2 lg (Re  VV) - 0.8 (8) 
VT T 

3 
according to Prandtl [7] for Re > 5*10  in the smooth tube 

(an equation by R. Hermann [8] is also used frequently for 

smooth tubes and Re > 10 ). 

Nothing further will be said about the laws of resistance 



for non-isothermal and/or non-developed flow as well as for 

rough tubes, since these have only recently been compiled by 

W. Nunner [1]. 

2.3  Heat Transfer Laws 

The heat flow Q transmitted with a fluid or gaseous flow 

results from: 

dQ = Oc'(t' - t^) dF (9) 

with  b6' as the local heat transfer coefficient, F the heat- 

transmitting surface, t' the local wall temperature and t?1 

as the fluid temperature determined at the point under con- 

sideration over cross sectional plane f.  If density o^ and 

the specific heat c  of the flowing medium is assumed con- 

stant over cross section f with constant pressure p, then 

we have 

tF1 = j t w d f/ J w df (10) 

t t 

with t as the local fluid temperature in the cross sectional 

component df. 

In order to obtain the total transmitted heat Q. and an 

average heat transfer coefficient ex- , respectively, only the 

average fluid temperature t  along the heat-transmitting portion 

of the tube needs to be utilized with constant wall tempera- 

ture t , instead of t .. .  The following is valid: 

ln(t2i-r-F;) 
w    2 



where t  and t„ are the average fluid temperatures at the 

start and at the end of the heat-transmitting tube portion, 

as well as 

Q =0t(tw - VF (12) 

The similarity principle results in 

Nu = o(d/A = f(Re, Pr, L/d) 

for the average Nusselt figure Nu in smooth tubings, where A 

is the coefficient of thermal conductivity of the flowing 

medium, Pr = V/a is the Prandtl coefficient, w> = n/g is the 

kinematic viscosity, a = A./p c  is the thermal conductivity fc  P 
and ij is the dynamic viscosity. 

With the assumption t  = const. W. Nusselt [9] found the 

fixed value Nu = 3.65 for the case of hydrodynamically and 

thermally developed laminar flow.  For a thermally non-developed 

flow, the experimental results are well reproduced by the 

equation 

„u.3.65,    0.0668 P. 1/L   (^ /„)<>■■»     {IJ) 
1+0.045(Pe d/L)2/J   F1 ^ 

according to H. Hausen [10], in which Pe = RePr denotes the 

Peclet number and in which the substance magnitudes in Nu and 

Pe are to be referred to the average fluid temperature t . 
* m 

The viscosities rjF1 and rj^ are to be substituted for the 

average fluid and wall temperatures. 

The empirical formula by ¥. Nusselt [11] 

Nu = 0.0326 Re°-786Pr°-45(d/L)0-054 (14) 



is frequently used in the case of turbulent gas flow, in which 

the substance magnitudes are to be referred to the average 

boundary layer temperature t  = l/2(t  + t ).- The equation 
E> w m 

Nu   =   0.116[1   +(d/L)2/3](Re2//3-   125)Prm(qF1/r<w)
0-14        (15) 

according to H. Hausen [10] with the exponent m = 0.33 for 

fluids and m = 0.45 for gases, is still quite accurate even 

for small Reynolds numbers down to Re « 3000. 

It'. Nunner [l] generalized the known Prandtl equation [12 ] 

to the extent that it is,valid for smooth and rough tubes. 

He found 

iyRePr 
Nu =  w4 q,  (16) 

1 +^f-o-   '> 

In Equation (16), f denotes the coefficient of resistance of 

the rough tube, ty    the coefficient of resistance of the smooth 

tube with equal Reynolds number, and w' is the velocity at 

the imagined boundary of laminar wall layer and turbulent 

main flow.  W. Nunner was well able to reproduce his experi- 

mental results with Equation (16) if he utilized an expression 

given by E. Hofmann [13] for the ratio w'/w. 

In the range of the thermal intake distance 1,. , the 

heat transfer coefficient is greater than in the case of 

fully developed velocity and temperature distribution, in which 

range it becomes independent of the length of the tube.  The 

thermal intake distance 1., of tube flows has been calculated th 

in various ways (compare e.g. [1, 14-16]).  The values accord- 

ing to the equation of K. Elser [15] are obviously too low, 

while the other equations [l, 14, 16] produce values which 

agree well within the limits of the experiments which are 

still to be discussed.  According to H. Latzko [14], 1 
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depends on Re and^i; according to V. J. Berry [16] it depends 

on Re and Pr.  According to the equation of ¥. Nunner [1], 

1th varies proportionally with Re and Pr as well as inversely 

proportionally with Nu.  With respect to further details on 

thermal intake processes, the reader is referred to [l]. 

3.  Experimental Equipment and Performance 

3.1  Experimental Apparatus 

The test stand which has already been described in detail 

by W. Nunner [l] was utilized for the experimental investiga- 

tion of the influence of turbulence promoters on heat transfer 

and pressure loss.  A radial blower presses the aspirated open 

air into an air reservoir which is first of all connected to 

a tube with electric heating (in order to adjust the tempera- 

ture of the introduced air to a desired value), a sliding 

valve (for flow adjustment), and an orifice measuring section 

with two experimental chambers (for the flow measurement).  The 

air then flows through a tube divergence filled with aluminum 

chips (in order to equalize velocity and temperature), over a 

straight intake section of 50 mm diameter and 2.5 m length 

into the experimental tube proper of 50 mm internal diameter 

and 980 mm length, and finally returns to the open air over a 

2 
short outlet run.   The experimental tube proper was externally 

heated with steam at atmospheric pressure.  In order to control 

the amount of heat which was absorbed by the air in the experimental 

tube and which was determined by a measurement of its tempera- 

ture increase, the amount of condensed steam could be con- 

tinuously weighed with a scale.  The experimental tube section 

was wrapped with glass wool beginning at the tube divergence 

for the purpose of heat conservation. 

2) Compare in this respect [l]; especially Fig» 2 on p. 20. 
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3.2  Measurement Arrangement 

The experimental tube proper, i.e. the measuring section, 

consisted of brass with absolutely smooth inside walls and 

was externally wrapped with a double steam jacket each of 
3 

which was provided with its own condensation runoff.   The 

heat radiated in the internal steam jacket was almost entirely 

absorbed by the air; the heat liberated in the external jacket 

generally overlapped with the heat losses to the outside. 

Narrow air gaps of 1 mm width at the entrance and outlet of the 

measuring section served to thermally insulate the latter from 

the entrance and outlet sections.  Intermediate flange couplings 

of Turbax and a cooling chamber traversed by water in the front 

flange of the tube prevented a further undesirable heat conduction. 

For the purpose of flow measurement, a valve and four 

orifices of varying widths were provided which made possible 

an approximately uniform measuring accuracy over the range 

of the adjustable weight rates of flow.  The effective pressure 

of the orifices was measured by means of a micromanocieter 

according to A. Betz, and the pressure in front of the orifice 

was measured with a U-tube.  The measuring accuracy amounted to ± 1%. 

The difference of static pressure before and behind the 

measuring section represented its pressure loss.  The static 

pressures were obtained from annular chambers into which 

the mentioned air gaps opened at the two ends of the experi- 

mental tube.  A micromanometer according to A. Betz also 

served for the measurement of the pressure loss, while a 

lever manometer was used for values below 1 mm water column 

which permitted the recording of pressure differences of 

10   mm water column.  In the case of pressure differences 

3) Compare [l]; especially Figs. 6 a and b on p. 26 
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above 400 mm water column, U-tubes filled with water or 

mercury were utilized. 

The transmitted heat could be most accurately measured 

from the temperature increase of the air, tirhile the amount of 

heat calculated from the amount of condensation only served 

for purposes of control.   The air temperature directly before 

the entrance section was measured with a mercury thermometer. 

Thus the velocity distribution could develop without inter- 

ference up to the experimental , tube.  The latter was provided 

with ten external thermocouples at various axial distances 

from each other.  These thermocouples were located in small 

grooves running around the tube.  Since the wall thickness of 

the tube amounted to only 2.5 mm and since, thus, the tempera- 

ture drop through the tube wall remained negligibly small, 

the thermocouples practically registered the internal tem- 

perature of the tube wall.  Preliminary experiments demon- 

strated that the tube wall temperatures (aside from the 

first 20-30 mm of heated measuring section) was entirely 

constant.  Therefore it was subsequently determined only with 

three thermocouples.  Two filter thermocouples of different size 

at the outlet section served for the measurement of the aver- 

age temperature of the heated air.  In order to prevent heat 

losses in this outlet section, the air at the end of the tube 

was diverted by 180° and returned along the outside of the 

tube.   The comparison terminals of the thermocouples were 

located in the tube divergence before the inlet section, so 

that the temperature differences required for the calculation 

could be determined directly.  The thermoelectric voltage of 

the individual thermocouples was determined by means of a 

Steinwehr compensator and a reflecting galvanometer for 

a zero reading instrument. 
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A sliding instrument was available for a measurement of 

the velocity and temperature distribution which made possible 

an exploration 01 the tube cross section shortly before the 

end of the measuring section, after the outlet section was 

removed.  The velocity distributions were measured with a 

Pitot tube of 1 mm external diameter, however only with iso- 

thermal flow.  The temperature distributions were scanned 

with a copper-cons tantan thermocouple of 0.1 mm wire diameter. 

Due to the small wire diameter, a radiation protection could 

be dispensed with.   The counter terminal of this thermo- 

couple, just as all other counter terminals, was located 

in front of the inlet section in the air flow. 

By the use of different basic forms of passive turbulence 

promoters (orifice- and disc-shaped inserts, propeller- 

shaped baffles, helically twisted metal sheets and various 

packing materials such as Raschig rings and spheres) a fairly 

good survey of the effect of turbulence promoters should result. 

The inserts—with the exception of the packing materials—were 

produced in such a manner that they could be easily introduced 

and withdrawn from the smooth experimental tube.  In addi- 

tion to the experimental tube proper, the inlet and outlet 

section also contained such inserts over a distance of 8 to 

10, respectively, of 3 tube diameters.  The air gaps for laking 

of the pressures were located in the middle between two tur- 

bulence promoter components.  In this manner it was possible 

to determine the pressure loss without falsification. 

In the case of pressure loss determinations for isothermal 

flow, the filter thermocouples and the air return at the end 

of the outlet section were removed, since these falsified the 

static pressure at the end of the experimental tube to some 

extent. 
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Before beginning a heat transfer determination, the state 

of equilibrium was waited for.  This could be recognized from 

the fact that steam emerged from the condensation nozzles in 

addition to the condensate, and that the temperature of the 

filter thermocouples no longer varied.  In addition, the 

water flow through the cooling chamber of the flange at the 

end of the inlet section has been adjusted in such a manner 

that the air temperature at this point exhibits the same value 

as at the start of the inlet section.  If all of these assump- 

tions occurred, then consecutive measurements were taken of 

the effective orifice pressure, the static pressure before 

the orifice, the temperatures of the tube wall, of the enter- 

ing and heated air, as well as the amount of condensation 

(which was determined at least three times during each ex- 

perimental series). 

The experimental range was limited toward the top by the 

blower efficiency, and toward the bottom by technological 

measuring difficulties during the determinations of flow, 

pressure loss and heat transfer.  In a smooth tube this cor- 

responded to a range of Reynolds numbers Re between 500 and 

80,000.  Depending on the magnitude of the pressure loss, 

the two limit values of the tubes with turbulence promoters 

shifted to smaller values.  Heat transfer measurements below 

Re si 500 were no longer carried out. 

3.3  Evaluation Method 

The density of the air o was determined with the aid of 

the gas equation 

£ = p/RT (17) 
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from the static pressure p, the absolute temperature T and the 

gas constant R = 29.3 kp m/kg°.  The influence of atmospheric 

moisture on £ remained negligibly small. 

The tabulated data according to [17] were utilized for 

the dynamic viscosity n and the coefficient of heat conduc- 

tivity X of the air.  Compared to this, the influence of 

air humidity could amount up to 17. with a specific heat cp» 

For humid air, c  resulted from 

c_ = 
0.240 + 0.46jx (18) 

"P       1 * x 

in kcal/kg°, where x is the moisture content of air in kg per 

kg of dry air. 

Since the pressure loss ^p = Pi"P2 
over a measuring section L 

(with p  and p  as the static pressure at the start and at the 

end, respectively, of the measuring section) was only deter- 

mined during isothermal flow, the following is valid for the 

coefficient of resistance from Equation (2): 

y, A'"1'1';' - m £■)] (.9) L ^7^ 
Since the logarithmic member in comparison to the first member 

remained negligibly small even for the largest y\p-values 

which occurred, the following was valid with sufficient 

accuracy for the practical evaluation: 

*-J*-.<L =   ^ 2"d5 (20) 
T  i O w2 L      8 C-2 L 2 im 

with G as the weight rate of flow of mass and gm as the 

average density of the air in the experimental tube (derived 

as the arithmetic mean from the initial and terminal state). 

The diameter of the smooth tube was always used for the 

diameter of reference d; the former had to be determined with 
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G   c t     -   t, 
ex = wtw -v   In ft* dL 

,   w           1 

t     -   t. w           2 

great accuracy, since it enters in Equation (20) with a power 

of five.  As \^ill be shown later in section 4.111, it is of 

no advantage to utilize other values for d, whether for the 

individual turbulence promoter tubes or for the turbulent 

and laminar range of flow. 

The heat flow Q absorbed by the air in the experimental 

tube amounts to: 

Q = G c (t2 - t,) (21) 

where t  and t^   are the average air temperatures at the beginning 

and at the end of the heating zone. At constant wall tem- 

perature t , the following is valid for the average heat 

transfer coefficient: 

) (22) 

and for the average Nusselt number, respectively: 

,v ,   G c      t  - t, 

The measuring results were evaluated by means of Equation 

(23) with the internal surface of the smooth tube as the 

heat transfer plane.  In the absence of more accurate and 

suitable magnitudes of reference, this proved to be best. 

The thermal intake length 1    of the smooth tube 

vras determined according to the data of V. J. Berry [16]. 

This ltho value coincides almost entirely with the result 

according to H. Latzko [14] or according to W. Nunner [l]. 

According to W. Nunner, the thermal intake section varies in- 

versely proportional to the Nusselt number.  If this function 

is assumed to be also valid for tubes with turbulence inserts 

and if the corresponding equation by W. Nunner is introduced, 
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with which he approximates the values of H. Latzko, then the 

following relation results for the heat transfer coefficient 

OL   of the thermally developed flow: 
oo 

(X  =  *    (24) 
00  ,   n , Hho Nuo 

1 + °-1 -1--NU- 

where »4 is the average coefficient of heat transfer over the 

tube length L, Nu  is the average Nusselt number of the smooth 

tube and Nu is the average Nusselt number of the tube with 

inserts.  With an equal reference temperature of the mass 

magnitudes, the Nusselt number Nu  for the thermally and 

hydrodynamically formed flow thus results as: 

Nu «  Nu   (25) 
oo 1..   Nu 

1+01 tho —S. 1 + U#'   L    Nu 

With the aid of Equation (25), the Nu values in some cases 

have been recalculated to Nu  according to Equation (23). 
oo 

In order to calculate the Reynolds number 

Re = ü££ =  *£-, (26) 
q    1T qd 

of the heated tube, the average boundary layer tanperature 

t  =l/2(t  +t) served as the reference temperature, g       w   m 

4.  Experimental Results 

4.I  Disc-shaped Turbulence Inserts 

Disc-shaped inserts were intended to represent a continua- 

tion of the investigation of W. Nunner [l] who, among other 

things, also used disc-shaped tube inserts to produce tube 

roughnesses, and were also to extend the range of investigated 

roughnesses to extremely high values.  Table 1 gives a summary 

of the arrangements utilized. 
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The disc-shaped inserts had orifice heights (roughness 

heights) K = 2.5, 10 and 12.5 mm.  Piston rings of 2 mm width 

and 2 mm height served as the smallest inserts which were 

individually pushed into the tube and which fitted well to 

the tube wall.  The larger discs consisting of 1 mm thick brass 

sheets were under-dimensioned by a maximum of 0.3 mm in com- 

parison to the experimental tube, so that they could be easily 

introduced.  These discs were threaded onto three brass rods 

of 2 mm diameter and soldered on at certain distances, Fig. 1. 

It can be assumed that the influence of the bracing rods on 

Fig. 1.—Examples for disc-shaped Turbulence Inserts. 

I to IV correspond to arrangements e, f, i and k in Table 1 

the pressure loss and the heat transfer remained negligibly 

small.  The supporting rods proved to be too weak at disc 

distances of over 350 mm.  In such cases, the individual 

discs were clamped tight with two   lower piston rings each. 

Care was always taken that the air gaps for the static 

pressure recording was located in the middle between two in- 

serts.  In this manner the numerical values recorded in Table 1 

resulted for the ratio L'/K with L' as the distance between 

the center planes of two neighboring discs. 

18 



Table 1 

Data of the Disc-Shaped Inserts 

Disc 
Height0 

K 

Orifice 
Ratio00 

m* 

Referred 
Ring Distance000 

L'/K 

Denotation of 
Arrangement 

mm — — 

2 0.845 9.8 
19.6 
78.4 
156.8 

a 
b 
c 
d 

5 0.64 3.92 
9.8 

65 
196 

e 
f 
g 
h 

10 0.36 3.92 
9.8 

32.7 
98 

i 
k 
1 
m 

12.5 0.25 26 
78.4 

n 
o 

difference between external and internal diameter of 
the aperture disc. 

ape 
°°m* = (d /d)  with cL as the internal diameter of the 

rture disc and d as the tube diameter. 
000The ring distance L' is measured from center to center 

of two neighboring rings. 

4.11  Pressure Loss 

4.111  Influence of the Reynolds Number:—Figs. 2 and 3 

show the results of pressure loss determinations during iso- 

thermal air flow for the smooth tube and for tubes filled 

with disc-shaped inserts, plotted as the coefficient of re- 

sistance according to Equation (20) as a function of the 

Reynolds number Re.  The straight line I corresponding to 

V -   64 /Re in the laminar range and the Blasius curve II ac- 

cording to Equation (7) in the turbulent range have been 

plotted for comparison purposes. 

The measuring values for the smooth tube are well located 

on the two comparison curves I and II.  The change-over from 

the laminar to the turbulent state of flow occurs at Re = 2900. 
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In the laminar range the measuring points deviate a little 

more from the theoretical curve I.  This can be explained by 

the insufficient length of the inlet section of 50 d which, 

according to Equation (5), only suffices for Re < 800, as 

well as by technological measuring difficulties. 

In the turbulent range, T depends only little on Re for 

tubes with inserts and considerably exceeds the coefficient 

of resistance of the smooth tube.  The curves for tubes with 

a small referred ring distance (L'/K^A  and L'/K*M0) have a 

weakly defined minimum, which is most distinctly evident for 

the smallest L'/K values.  This strange behavior has already 

been observed by L. Schiller [18], H. MBbius [19] and W. 

Nunner [l].  H. MBbius also utilized diec-shaped inserts with 

K = 5 mm in a tube of 50 mm internal diameter and found for 

mcst of his tubes that the rainimums of the Y, Re curves oc- 

curred at a certain characteristic value of Re.  H. MBbius 

formulated the Reynolds number with K and with the velocity 

which prevailed between the discs at the distance K from the 

wall.  But even with discs of K = 5 mm it is no longer pos- 

sible to determine this velocity accurately, since it changes 

considerably between a pair of discs and the measurement it- 

self is very inaccurate.  Possibly these *)* , Re curves in 

Figs. 2 and 3 would again be almost horizontal in their 

course at higher Reynolds numbers, similar to the case of 

H. MBbius.  Curve h for K = 5 mm with the largest L'/K value 

is the only one which has a slight downward slope throughout 

towards the right.  (Compare Fig. 2).  This might be attributable 

to the participation of wall friction in the total pressure 

loss. 

The transition areas from laminar to turbulent flow, 

which extend only over a very small Re-range, are especially 
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distinct for disc arrangements with small L'/K values.  In 

this instance the point of change-over is depressed to very- 

small values of the Reynolds number (to Re »170, compare 

curve n in Fig. 3).  In arrangements with large L'/K values 

the transition area is no longer distinctly recognizable.  It 

is for this reason that little can be said about to what ex- 

tent the change-over depends on L'/K.  Nevertheless, it can 

be concluded on the basis of the course of the V, Re curves 

that L*/K in these types of discs carries no particular weight 

and that only the orifice ratio m* of the discs has a consider- 

able influence.  If, in addition, a resistance curve for sharp- 

edged discs (K » 2 mm, L*/K«20) according to W. Nunner [l] is 

taken into account, then a relation results as below: 

Re,  = 2900 m*2'2 (27) kr 

which is between the critical Reynolds number Re   and m* for 

the case of sharp-edged discs as inserts. 

In the case of a small Re, all curves have a course paral- 

lel to the straight line Mf = 64/Re.  This is an indication that 

the flow exhibits a laminar character.  The differential 

parallel displacement of  f> Re curves in this case is due to 

the arbitrary selection of the tube diameter as a reference 

magnitude in Re.  Within the area of one type of disc it can 

be said without doubt that the really effective diameter, 

which corresponds to the lateral extension of the main flow, 

decreases with decreasing L'/K.  However, a determination of 

a suitable reference diameter with the aid of the measuring 

values was dispensed with; for every definition of the decisive 

tube dimension which deviates from the tube diameter d is, 

among other things, accompanied by the disadvantage that the 

processes during the transition from laminar to turbulent state 
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of flow are difficult to overlook, since the different refer- 

ence diameters of both states would somehow have to pass from 

one into the other. 

The question should still be considered whether the 

coefficients of resistance calculated from the measuring 

values contain any differential intake effects.  It can be 

imagined that the flow in the case of very small disc dis- 

tances (L'/K —> 0) behaves similar as in the case of a rough 

tube with correspondingly smaller diameter.  With increasing 

L'/K the state of flow first still changes a little from disc 

to disc.  Only when the flow has passed through a minimum 

number of discs, does the same course of flow always repeat 

itself between the subsequent disc pairs so that from now on 

4 
one could speak of a "fully developed" flow,  since then every 

section of the tube between two inserts contributes the same 

amount to the total pressure loss.  Evidently, the number of 

insert components necessary for the intake section increases 

with decreasing values of L' and K,  which however does not 

mean that the absolute length of the intake section increases 

to the same extent.  It follows from the measurements of H. 

MBbius [19] on the dependence of the intake effect on the 

dimensions of the disc inserts that the intake section and 

the number of installed inserts provided for the experiments 

described here, can be considered as sufficient.  Only in the 

4) The type of flow through tubes with inserts does not 

correspond to the state which is ordinarily designated as 

fully developed, even with a sufficiently dimensioned intake 

section.  The difference in processes also affect the posi- 

tion and form of the change-over zone from the laminar to 

the turbulent type of flow. 
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case of the smallest discs (K = 2 mm and L'/KfJlO) it has to 

be taken into consideration along with H. MBbius that on the 

basis of intake effects 4* is at too high a point by 3%.  Up 

to this order of magnitude, errors hardly have significance 

for subsequent considerations. 

4.112 Influence of the referred ring distance L'/K;-- 

Fig. 4 shows the course of f as a function of L'/K for the 

aperture ratios ra* under investigation ani for two different 

Reynolds numbers.  As could already be seen previously from 

the course of the », Re curves, the influence of Re is not 

great.  The largest coefficient of resistance for a certain 

aperture ratio is found at L'/K * 10 in agreement with the 

results of H. Möbius and W. Nunner.  In the range of very 

large L'/K values, all ¥, L'/K curves must asymptotically 

strive towards that f-value which is valid for smooth tubes. 

In the case of very small L'/K values, the coefficient of re- 

sistance of a smooth tube is reached, the diameter of which 

is equal to the internal disc diameter.  With decreasing m* 

the Y, L'/K curves have an increasingly steeper inclination 

up to their maximum. 

4.113 Influence of the Aperture Ratio m*;--Fig. 5 con- 

tains the average values *fm  of 4* formed from Figs. 2 and 3 on 

the turbulent range as a function of the aperture ratio m* 

for various L'/K values (in part the f  values were inter- 

polated from Fig. 4).  Since *f     must become infinite at m 

m* = 0, the curves in Fig. 5 in the case of very small 

aperture ratios (m* < 0.25) might have a considerably steeper 

inclination than would correspond to the course of the straight 

line.  However, such small aperture ratios are hardly of 

practical significance.  In the case of large m* values 
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(m* > 0.85), the Reynolds number has a more extensive effect. 

This is also evident from the position of the points for the 

smooth tube (m* = 1.0), which are in the range of f = 0.0427 

and 0.0187 for 1500 < Re < 80,000.  In the range of 

1.5'10 =  Re = 8*104, 0.25 = m* = 0.85 and 10 = L«/K = 200, 

the measuring points for L'/lC in Fig. 5 can be approximated 

by straight lines which correspond to the exponential law: 

H>m  = 17,500 [(L./K) + 25]-K7Vm*C6-°-01(L,/K>3    (28) 

Fig. 6 demonstrates the good agreement of the measured V   - 
I m 

values and those which were calculated according to Equation (28) 

The given coefficients of resistance strictly speaking 

can only be transposed to other arrangements of the same type 

if the discs are geometrically similar.  However it can be 

assumed that the width of the sharp-edged discs influences 

the total pressure loss only inconsiderably in the case of 

tube dimensions which are not excessively small. 

4.114  Pressure Loss of an Individual Disc in the Total 

System:--Reference has already been made to the fact that 

after the first few preliminary discs, every individual disc 

in the subsequent tube section contributes to the pressure 

loss to the same extent.  Thus, the individual resistance of 

a disc in a total system can be calculated from the coeffi- 

cient of resistance M> of the tube flow with inserts and from 

the number of discs in the experimental tube; this factor 

shall be denoted by  f .  Now it shall be assumed that in the 

case of the largest disc distances under investigation (L'/K = 

157, 196, 98), the resistance of a disc in the unit is equal to 

the resistance of a single disc in a tube, the coefficient 

of resistance of which is denoted by V„_.  In the determina- 
sL 1 
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tion of these new factors *?E and "f£1 the pressure loss of 

the smooth tube (at Re = 40,000) was subtracted from the 

measured pressure loss and the result was divided by the 

number of discs.  In the case of large disc heights K and 

small L»/K ratios, the true tube friction resistance will 

admittedly differ somewhat from that of the smooth tube; the 

possible error due to this factor however remained out of 

consideration. 

Fig. 7 shows the course of Hg/1^ as a function of 

L'/K for the three largest aperture ratios m*.  This repre- 

sentation demonstrates the effect of the reciprocal masking 

of the inserts.  Beginning with L'/K  50, we practically have 

y   / 4*   = lj i.e. every disc in the unit acts in the manner 
' E   E 1 

of a single disc in a tube.   ^E^EI decreases with decreas- 

ing L'/K, and this occurs more readily with large m*-values 

than with small ones.  It is evident from Fig. 7 that the 

individual resistances of the discs increase less than linearly 

with L'/K in the range L«/K > 10.  On the basis of this it 

follows that the total resistance must decrease with increas- 

ing L'/lC values (at L'/K > 10), since L'/K is almost exactly 

inversely proportional to the number of individual resistances. 

On the other hand, in the range of L«/K < 10, the individual 

resistance shows a more rapid decrease than the increase of 

the number of individual resistances, so that the total re- 

sistance in this range must also decrease in spite of the in- 

creasing number of individual resistances.  The drop of the 

curves in Fig. A on both sides of the maximum at L'/K f=* 10 

thus can be plainly interpreted.  E. HUbner [20] obtained 

similar results with tubes containing rod-shaped inserts. 
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4.12  Heat Transfer 

4.121  Influence of the Reynolds Number;—In Figs. 8 and 

9 the course of the average Nusselt numbers Nu calculated from 

the measuring values are reproduced as a function of the Reynolds 

number.  The measurements include the thermal intake effect. 

Lines I and II represent the comparison curves for the laminar 

and turbulent ranges, respectively, in a smooth tube accord- 

ing to Equations (13) and (14).  While the measuring points 

of the turbulent range in the smooth tube fall very well 

onto line II, greater deviations are noticeable at Re < 4000, 

which are caused by the influence of free convection.  The 

fact that the measuring points fall considerably above line I 

is also due to this influence.  An empirical equation by A. P. 

Colburn compiles these relations on the basis of their order 

of magnitude. 

The Nu values attained in the turbulent range of tubes 

with turbulence promoters are up to four times as large as in 

the smooth tube; the slope of the curves over a large range 

agrees altogether with that of the smooth tubes.  In a com- 

parison of the T, Re curves in Figs. 2 and 3 with the Nu,Re 

curves in Figs. 8 and 9, similar properties are evident:  a 

small change of direction of the H*> Re curves coincides with 

the same behavior of the Nu,Re curves.  The sequence of curves 

admittedly has changed partly in Figs. 8 and 9 in comparison 

to Figs. 2 and 3, which can be attributed to the strong in- 

fluence of L'/K and m* on Nu. 

In the laminar range in Figs. 8 and 9, all curves with 

decreasing Re approach each other more and more, i.e. the 

5) Compare in this respect [l]; especially Equation (21) 

on p. 16 
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influence of K and L' decreases continually until it disap- 

pears almost entirely at Re^600.  In the range of Re > 600, 

the influence of the free convection continues to decrease not 

only with increasing Re but also with decreasing values of m* 

and L'/K. 

It should still be noted that the disc inserts cover 57„ 

of the heating area in the most unfavorable case; since they 

were slightly underdimensioned, however, and therefore adhered 

only little to the tube wall, the effective heating area could 

hardly be decreased by these inserts.  The same is true for 

all other turbulence promoters under investigation. 

4.122 Influence of the Referred Ring Distance L'/K;— 

In the turbulent range Nu depends on L'/K in a similar manner 

as the resistance coefficient and also attains the highest 

value for the different types of discs (m* = const) at L'/K « 10, 

4.123 Influence of the Aperture Ratio m*;—For subse- 

quent considerations it seemed suitable to eliminate the in- 

fluence of the intake effect.   The representation in Fig. 10 

in which the average Nusselt number Nu of the tube with in- 

serts divided by the average Nusselt number NUQ of the smooth 

6) For this purpose the Nusselt numbers Nu were recal- 

culated to Nu  according to Equation (25) and designated as 

Nu (i.e. the index co was omitted).  In the experimental values 

for other turbulence inserts, which are still to be reported on 

in the following sections, only the Nu,Re curves contain the 

particular intake effect, while the Nusselt numbers in all 

other representations have been recalculated to values of 

fully developed flow in the same manner and have been denoted 

by Nu. 
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tube, is plotted for different L*/K values as a function of 

m*, gives a good view of the manner in which the heat transfer 

in tubes can be increased by means of sharp-edged, disc-shaped 

inserts.  The curves correspond to average values for the 

range of 10,000 < Re < 40,000; the individual values deviate 

by ± 37o at the most.  If the validity range is expanded to 

4000 < Re < 80,000, the individual values for different 

Reynolds numbers deviate by a maximum of ±107, from these 

average curves.  The greatest deviations in this case occa- 

sionally occur for the average aperture ratios (m*si0.5). 

The curves for the values L'/K < 10 which still are 

present for a limited range have not been plotted in Fig. 10. 

They are again lower than the curve for L'/K = 10.  While 

the curve for L'/K -  8 still nearly coincides with the one 

for L'/K = 10, the curves for L'/K = 4 and L'/K = 20 prac- 

tically do coincide. 

Mainly it is worthy of note that the Nusselt number can 

attain 4.5 times as large values for the maximum case than in 

the smooth tube.  This is true for m*-»0.3 and L'/K^HO. 

But for smaller m* values the curves drop again.  However 

this range of m* hardly has significance, since the pressure 

loss in this area increases considerably. 

Approximately half of the possible increase of Nu already 

results from the transition of m* = 1 to m*;a0.85, i.e. in a 

range which is barely touched by the new experiments.  The 

results of W. Nunner [l] fill this gap. It is true that the 

coefficient of resistance also increases considerably more 

in the range 1 = m* = 0.8 5 than in the range 0.85 = m* = 0.25 

(compare Fig. 5). 
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4.124  Relation between Heat Transfer and Resistance;-- 

In order to provide a better view of the relationship between 

the pressure loss and heat transfer, the average Nusselt 

number Nu was plotted as a function of the ratio  1*/ ^  ,which 

is the ratio of the resistance coefficients y and ^ of the 

tube with and without inserts, respectively, at equal Reynolds 

number.  Since at Re = const and p = const the weight rate of 

flow of mass was also constant, it is possible to introduce 

the ratio N/N  of the delivery efficiency N and NQ of the blower 

with and without inserts, respectively, in place of H1/4* • 

In Fig. 11 the Nu,  *f/ H*  curves are valid for different 

values of m* = const.  The straight lines I and II connecting 

the points obtained for the smooth tube at ^*/f  =1 show how 

the Nusselt number would increase in a smooth tube for the two 

Reynolds numbers under investigation if the velocity were in- 

creased from an initial value w  to a value w in such a manner o 

that the coefficient of resistance would increase from f o 

to  T.  The energy input N  for conveying the air through the 

smooth tube with velocity w then is exactly as great as the 

energy input N which is required to convey the air through a 

tube with inserts at velocity w . J      o 

Since the external tube dimensions remain the same, it 

is possible to determine with the aid of Fig. 11 and by 

neglecting differential heating area expenditures whether it 

is advantageous to improve the heat transfer by increasing 

the rate of flow in the smooth tube or by means of turbulence 

promoters.  Thus, for example, at Re .= 40,000 the values of 

the discs with K = 2 mm (m* = 0.85) and in part of the discs 

with K = 5 mm (m* = 0.64) are found above curve I; therefore 

from the energy-economy point of view these inserts are superior 

to the smooth tube.  The reference ring distance L'/K = 10 has 
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the most favorable effect for all ra* values.  Small m* values 

on the other hand, are unfavorable, since the Nusselt number 

decreases with m* at ¥/ VV  = const (and N/N  = const or '  o ' o 

Nw/N  = const, respectively). 

Similar relationships exist also for the smaller Re values, 

only with the difference that the influence of turbulence pro- 

moters has even a somewhat more favorable effect.  Above m*530.7 

all disc arrangements are superior to the smooth tube from 

the economic point of view. 

4.2  Rings as Turbulence Promoters 

In contrast to the disc-shaped inserts described in 

Section 4.1, which adhered relatively closely to the tube 

wall, similar inserts were studied in which an open gap of 

2.7 mm width remained between the external circumference of 

the insert and the tubewall.  In this manner it was to be 

demonstrated how such gaps influence the flow processes and 

the heat transfer.  These arrangements shall be denoted as 

ring-shaped turbulence promoters. 

Two types of rings were utilized.  The external diameter 

of the rings generally amounted to 44.5 mm, the internal dia- 

meter to 40 and 37 mm, respectively, and the thickness to 

1 mm.  Thus the rings had a height of K = 2.2 5 mm and 3.7 5mm 

respectively.  Three sheet-brass rods of 1 mm thickness which 

were externally soldered onto the rings kept the arrangement 

together.  The optimum value of L'/KjtflO was selected for 

the reference ring distance, as had been found previously. 

The hoight of the brass rods was kept at such measurements 

that the entire ring system could be unobjectionably intro- 

duced into the experimental tube and that the rings were in 

concentric position to the tube axis.  The greatest projec- 
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Fig. 12.—The coefficient of resistance *f in the tube 

with ring-shaped turbulence inserts as a function of the 

Reynolds number Re.  K = ring height; I and II = comparison 

curve according to Equations (6) and (7) for the smooth 

tube without inserts. 
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the Reynolds number Re for the tube with ring-shaped turbulence 

inserts.  K = ring height; I = comparison curve according to 

Equation (14) for the smooth tube without inserts. 
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tion of the rings from the wall amounted to about 5 and 

6.5 mm, respectively. 

4.21 Pressure Loss 

Fig. 12 shows the measured 4» ,Re curves which have a course 

similar to those in Figs. 3 and 4 for the discs with K = 5 mm 

and with the small reference ring distance.  The coefficient 

of resistance for the small rings in Fig. 12 is below the 

curve for the larger rings.  The change-over from the laminar 

to the turbulent state of flow for the small rings as well as 

for the discs with K - 5 mm occurs at almost the same Reynolds 

number. 

4.22 Heat Transfer 

Just as in the case of the coefficient of resistance, 

the course of the Nusselt number as a function of the Reynolds 

number for ring inserts according to Fig. 13 is very similar 

to the one which was found for discs with K = 5 mm (L'/KäTIO) 

(compare Fig. 8), with the exception that the curves in Fig. 

13 are someiifhat lower.  The surprisingly small difference in 

the heat transfer between the ring inserts and the disc- 

shaped inserts is explained later in Section 5.36 on the basis 

of special measurements.  Fig. 11 also contains the measure- 

ment values for Nu as a function of *V/Y  for ring inserts; 

these points are also close to the curves which are valid 

for the discs with K = 5 mm. 

4.3  Baffleplate-shaped Turbulence Inserts 

In another measuring series baffleplate-shaped inserts 

were utilized which, in contrast to the above-described inserts, 

are supposed to cause flow turbulence from the center of the 

tube.  Fig. 14 shows a few of the baffle-plate inserts which 

were utilized; Table 2 contains their most important data. 

37 



Fig. 14 Examples of baffleplate inserts.  I to VI = 

arrangements I, H, E, G, A and B corresponding to Table 2; 

a = spacer. 
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Table 2 

Data for Baffle Plate Inserts 

External Plate    Aperture      Reference     Denotation of 
Diameter Ratio        Plate the 

d„ m* Distance*      Arrangement 
S mm L»/de 

20             0.84           1.55 A 
3.8 B 
9.8 C 

30             0.64           0.65 D 
1.63 E 
3.27 F 
5.45 G 

40             0.36           1.44 H 
3.5 I 
8.15 K 

°The plate distance L' is measured between the center 
planes of two neighboring baffleplates. 

The external diameters d  of the brass plates of 1 mm thick- 

ness were selected in such a manner that the aperture ratios m* 

for the ring-shaped gaps resulted in the same amounts as for 

the disc inserts.  A brass rod pushed through the center of 

the plates and soldered onto them served for the introduction 

of the system into the experimental tube.  Individual plates 

were provided with three spacer rods which made possible a 

concentric position to the tube axis. 

4.31  Pressure Loss 

4.311  Influence of the Reynolds Number;—Fig. 15 shows 

the course of the coefficient of resistance as a function of 

the Reynolds number (for the sake of clarity some of the 

curves which were measured have been omitted).  Strangely 

enough no unequivocal statement is possible about the transi- 

tion from the laminar into the turbulent flow.  Only in the 

case of plates with d  = 20 mm (curves A and B) is it pos- 
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sible to recognize transition areas (400 = Re = 600) and at 

the left of this there are also curve portions the course of 

which indicates a laminar character of the flow.  Above 

Re«*5000,  f remains almost independent of the Reynolds number; 

only curve C for d  = 20 mm drops slightly toward the right, 

since the proportion of wall friction in this case is still 

relatively high with respect to the total resistance.  The 

highest coefficients of resistance are about 400 times as 

large as in smooth tubes. 

4.312  Influence of the Distance Ratio L'/d ;—It is 

evident from Fig. 16 how the coefficient of resistance  ^ 

changes with the referred plate distance L'/d  at Re = 40,000 

(L* denotes the distance of the center planes of two neighbor- 

ing plates).  The curves for m* = const have a similar course 

to those in Fig. 4 and exhibit a maximum which is found at 

the point L'/dg^O.g for the average aperture ratio m* = 0.64. 

For large L'/dg values (L'/dg -> oc) the coefficient of re- 

sistance of the smooth tube must also be attained here, while 

for very small L'/dg values (L'/dg -> 0) the coefficient of 

resistance of a ring-gap flow must be reached. 

4.3 13  Influence of the Aperture ratio m*:--Fig. 17 shows 

the course of f as a function of m* with L'/d  as the para- 

meter for Re = 40,000.  The values have been partly inter= 

polated from Fig. 16.  Similar to Fig. 15, the curves can be 

represented by an empirical equation; the following is true in 

the range 0.36 = m* = 0.85 and 8 = L'/d  * 1.5: 

4» = T,
10°  e-m*[6-0.l(L'/dg)3 (29) 

L /dg 

Since T hardly changes with Re in the range Re = 8000, Equa- 

tion (29) is also valid for other Reynolds numbers than 40,000. 
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Fig. 16.—The coefficient of resistance 4*in the tube 

with baffleplate inserts as a function of the referred plate 

distance L'/d  for different aperture ratios m* and for a 

Reynolds number Re =4*10 . 
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The influence of the plate thickness was not investigated 

further.  The latter might influence the pressure loss only 

under extreme conditions, such as, for example, with very small 

tube or plate diameters. 

4.32  Heat Transfer 

4.32 1  Influence of the Reynolds Number;—In the course 

of the average Nusselt number Nu as a function of Re in Fig. 

18 it is again noticeable that in a large proportion of the 

turbulent range all curves run parallel to curve I for the 

smooth tube.  The Nu values are up to 5 times as large as in 

the smooth tube; if the Re values are not too small, the Nu- 

values are considerably influenced by the aperture ratio, 

while the L'/dg factor has a more extensive effect mainly 

with small m* values.  With decreasing Re all curves approach 

each other more closely and at Re»600 they run into one curve. 

4.322  Influence of the Aperture Ratio m*;—Fig. 19 shows 

NU/NUQ as a function of m* with L'/d  for a parameter.  The 

curves represent the average values for the range 10,000 = Re 

= 40,000.  The maximum deviation of the individual values 

amounts to ±3%.  But if the validity range is expanded up to 

Re = 80,000, then individual values deviate by a maximum of 

12% from the curves.  The greatest deviations occur at m*<x.0.5. 

A maximum of Nu/NuQ for a certain value of L»/d  could not yet 

be determined on the basis of experimental results.  While in 

the case of disc-shaped inserts 4.5 times as high Nu-values as 

in the smooth tube could be attained as a maximum, the upper 

limit of NU/NUQ in the baffleplate-shaped inserts might be 

considerably higher.  The curves have a very steep course in 

the range 1 = m* = 0.85. 
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baffleplate distances L'/d  for the Reynolds number range 
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4.323  Relation between Heat Transfer and Resistance!— 

The heat-economy value of tubes with baffleplate inserts 

was compared to that of smooth tubes at accelerated velocity 

in Fig. 20 similar to Fig. 11.  The three groups of curves 

are valid for Re = 4000, 10,000 and 40,000.  The points 

found for every type of plate (m* constant) at Re = const 

have been interconnected by curves.  At Re = 40,000 only one 

case was found for the plates in which the Nusselt numbers 

had exactly the same magnitude as for a smooth tube with 

correspondingly increased velocity (plates with d  = 40 mm, 

L'/d «1.5).  With decreasing Re the baffle turbulence pro- 

ducers behave increasingly more favorably.  It is also true 

for baffleplates that Nu decreases somewhat with m* at equal 

"P / 4* .  While the curves of plates with d_ = 20 mm and 30 mm 
'  o ^ S 

are almost parallel to the straight lines I to III for the 

smooth tube, the course of the curves for plates with d  = 40 mm 

is steeper.  Thus, larger L'/d_ values have a considerably 

more unfavorable effect here than in the case of smaller types 

of baffleplates. 

4.4  Propeller-Shaped Turbulence Promoters 

Baffles such as propellers cause flow turbulence in an 

entirely different manner than do discs, rings and plates. 

The additional tangential component of the rate of flow,which 

occurs in the center as well as near the wall of the flow in 

the presence of torque, decisively changes the entire character 

of flow in comparison to flow in a purely axial direction. 

The propellers utilized for the measurements were pro- 

duced from a brass plate of 50 mm diameter and 1 mm thickness. 

Vane-shaped sections were formed by means of six slits made 

from the outside which were twisted uniformly at an angle of 

44 



600 
3 

S3     ¥00 

U 
CD 

B    200 
3 
C 

-P   wo 

si     W 
(V 
to 
H 
<D 
> 

1  II 11 III 
'——' Re- '</•'»?' 

 Re- i-w" 
Re- 1-103 

5? •" 
L 

TU 

a* 
■"* 

r* s             f # 
. JW'^ ^^ -'-'--" :n " ^-- 

jf^~"~ ^' ir, 0.6* *--.--' 
'*" ̂ ^ f(),8* 

r»^ 
.«•" -"" ' F- 

= (?• 
>// 

--'"" 1     -»" 
0,8»      -- 

.-u X  //             ^ 

r-'- -i--
1" 

-jf^^' +  D         c 

* C        c 
KM ■ 0   < 

IFh 774101 

V     6   8 W        20        ¥0   60 80 WO       200       WO 

Referred coefficient of 
resistance *f/f 

Fig. 20.—The average Nusselt number Nu as a function 

of the referred coefficient of resistance f/^    for tubes with 

baffleplate inserts at different values of the aperture ratio 

m* and of the Reynolds number Re.  I to III = path of Nu for 

the smooth tube at a velocity increase corresponding to the 

increase of the coefficient of resistance from  Hf  to yf% o 

letters A to I refer to the corresponding classifications 

in Table 2. 

Fig. 21. — Examples of propeller-shaped inserts.  a and 

b = arrangements ready for installation %<rith closely and 

widely spaced propeller distances L*, respectively; c = 

individual propeller. 
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about 45° to the central axis of symmetry.  The individual 

propellers were mounted on a brass rod of 4 mm thickness 

onto which they were soldered at distances L* amounting to 

49, 98, 326 or 980 mm (Fig. 21). 

4.41 Pressure Loss 

The resistance curves represented in Fig. 22 for propeller 

inserts have an entirely different character than the %   Re 

curves for disc, ring and plate inserts.  Due to the swirling 

motion enforced by the propellers, the flow receives properties 

which have a continuous course of the coefficient of resis- 

tance as a consequence covering the entire range of Re, even 

in the case of widely spaced propellers.  The curves run 

similar to the case of a fill of packing material; at large 

Re values it appears that they asymptotically approach a 

straight line with very little slope and at very small Re 

values (Re < 100), on the other hand, they come close to a 

straight line at 45° to the abscissa.  Strangely enough, the 

f ,Re curves for L* = 98 and 326 mm converge at high Re 

values, 

4.42 Heat Transfer 

Fig. 23 shows how Nu changes with Re.  Above Re»3 10 

the curves have a parallel course to the straight line I for 

the smooth tube.  Below Re«600 all measuring points again 

fall on the same curve.  In the intermediate range, espe- 

cially in the case of smaller and medium-propeller distances 

L', the curves are somewhat higher than was to have been ex- 

pected on the basis of previous results. 

A few Nu values for different propeller arrangements 

have been plotted in Fig. 24 as a function of the referred 

coefficient of resistance •J'/ f  and were interconnected by 
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Fig. 25.—Helically twisted inserts.  a to c = metal 

spirals with a referred pitch h/d = 22, 8.5 and 5, respec- 

tively. 
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curves for Re = const.  These run approximately parallel to 

the straight lines I to III which are valid for the smooth 

tube.  It is worthy of note t*at the extension of the curves 

which are contained in Fig. 11 for discs with K = 5 mm almost 

leads to the curves for propeller inserts in Fig. 24.  Insofar 

as the disc-shaped inserts are properly dimensioned, they can 

thus serve for the attainment of  «|V ^Q  values and therefore 

also Nusselt numbers of approximately the same orders of 

magnitude as can be attained with propeller inserts. 

4.5  Helically Twisted Metal Sheets as Turbulence 
Promoters 

Because of the simple manner in which they can be pro- 

duced, helically twisted metal strips are often proposed for 

turbulence inserts which are easily introduced later into a 

smooth tube.  However, in the case of a small pitch h of the 

turns, the production of such strips proved to be difficult. 

For this reason, split cement molds were utilized inbet\ireen 

which a soft aluminum strip of 1 mm thickness, 50 mm width 

and approximately 2 m length was pressed into the desired 

shape at certain intervals.  Three such strips were avail- 

able for the experiments (Fig. 25) having 0.9, 2.3 and 3.9 

twists per meter (corresponding to a referred pitch h/d = 

22, 8.5 and 5).  For the helix with h/d = 5 the surface 

structure was no longer very good, however.  This disadvantage 

could possibly be prevented with the aid of a special rolling 

arrangement; nevertheless, strips with small h/d values 

probably can hardly be produced without a heat treatment of 

the sheet metal. 

4.51  Pressure Loss 

The resistance curves of Fig. 26 display a certain simi- 

larity to the course of those found for propeller inserts 
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Fig. 26.--The coefficient of resistance f in the tube 

with helically twisted inserts as a function of the Reynolds 

number Re.  I and II = comparison curve according to Equa- 

tions^) and (7) for the smooth tube without inserts; h = 

pitch of twists; d = tube diameter. 
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(compare Fig. 22).  It can be concluded from the course of 

the curves in Fig. 26 that the total pressure loss rests to 

a large part on the wall friction of the strips.  This holds 

true to the fullest extent in the case of infinitely large 

pitch.  In that case the tube would be subdivided into two 

halves by means of an axial separating wall.  The coeffi- 

cients of resistance of the turbulent range for this case of 

a smooth transmission flow can be calculated with the aid of 

the hydraulic diameter.  If the hydraulic diameter is 

selected as the reference magnitude for the measuring values, 

then the «P,Re curve for h/d = 22 is only approximately still 

157. higher than the curve for the smooth tube, while the dif- 

ference between the curves for h/d = 22 and II in Fig. 26 

amounts to approximately 1007». 

4.52  Heat Transfer 

According to Fig. 27, the Nu,Re curves also run similar 

to those for propeller inserts (compare Fig. 23), but in 

Fig. 27 the Nu values are smaller.  Nevertheless it is worthy 

of note that the Nusselt number of the smooth tube can be 

more than doubled by means of the twist. 

Fig. 28 shows the course of the referred Nusselt number 

Nu/Nu  as a function of the referred pitch h/d.  NU/NUQ 

increases with decreasing Re.  with decreasing pitch NU/NUQ 

tends towards a limit value which is apparently almost at- 

tained already at h/d^5. 

The relation between Nu and the referred coefficient of 

resistance f/ ^      is shown in Fig. 24.   With sufficiently large 

helical twist, the heat transfer in comparison to the smooth 

tube is improved to the same proportion in the range of 

smaller  MV t  values as in the case of propeller inserts in 

the range of larger HV S* 0 values.   For the metal strip with 
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Fig. 28.—The referred Nusselt number Nu/Nu  as a func- 

tion of the referred pitch h/d at different Reynolds numbers 

Re for the tube with helically twisted inserts. 
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the least amount of twist the curves descend more steeply, 

because the relatively large wall friction resistance of the 

strip at best contributes only indirectly and to a small ex- 

tent to the heat transfer. 

4.6  Tubes with Packing Materials 

As is known from earlier investigations, very large 

values are assumed by heat transfer and pressure loss in tubes 

with packing materials [21].  Therefore it seemed indicated 

to include a few experimental series with such tubes and to 

check the results which have so far been published. 

Five mm and 16 mm Raschig rings as well as 10 and 12 ran stone- 

ware balls served as packing materials, the characteristics 

of which are reproduced in Table 3. 

Table 3 

Data of the Packing Materials 

Aver. 
O.D. 

™ ,r- Of Type of 
•   -K«   i.  • Rings or Packing Materialj, ,, 

tsa l xs 

dK mm 

Aver. Refer. Rel. 
I. D. Ring Tube Space Denota- 
of Height Diam. Vol. tion of 

Rings 
d. 

h 
r 

d/dK *L 
Arrange- 

ment 
l 

mm - - - — 

5 mm Raschig 
rings 

16 mm Raschig 
rings   16.71     12.05  15.44 

10 mm balls    10.4 
12 mm balls    12.7 

5.39      2.79   5.64    9.28   0.565    <* 

ß 
b 

3.0 0.766 
4.81 0.578 
3.94 0.505 

They were poured into the experimental tube as well as into 

portions of the intake and outlet sections with the greatest 

possible density.  Screens held by low clamping rings braced 

the filling at the beginning and end of the filled tube sec- 

tions.  The screens were dimensioned in such a manner that 

their pressure loss remained negligibly small for every case. 
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For the 16 mm Raschig rings, the ratio d/d  (with d  as the 

external diameter of the rings and balls, respectively) was 

quite small, so that the edge effect was already consider- 

able and resulted in a large relative space volume L (space 

volume through free tube volume).  But this is also of great 

significance for the pressure loss.  In the ball packings 

d/d  was also relatively small. 

Overpressures up to 1 atm occurred in the experimental 

arrangement during this series, for which the equipment had 

not been originally planned.  In order to avoid leaks at the 

flange couplings, determinations of the rate of air flow in 

the packing material experiments were carried out in a measur- 

ing section mounted behind the experimental tube. 

4.61 Pressure Loss 

The Y,Re curves in Fig. 29 have the characteristic 

course for bulk materials and are almost parallel to each 

other.  Depending on the type of packing material,  Yis 

about 600 to 10,000 times as large as in the smooth tube. 

A comparison with other measurements, however, is hardly pos- 

sible, since these experiments as a rule were based on much 

larger d/d  values. 

4.62 Heat Transfer 

The Nu values are a little more scattered for the packed 

tubes than for the other turbulence inserts, Fig. 30.  This is 

due to the fact that the difference between the tube wall 

temperature and the average flow temperature fell back up to 

3°, so that small errors in temperature measurement already 

had a distinct effect.  It is noteworthy that all packing 

materials under investigation resulted in equal Nu values 

within a scatter range of ±15%, although the pressure loss 
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assumes very differential values.  At Re > 10  the Nusselt 

numbers on the average are about eight times as large as in 

the smooth tube. 

It is evident from Fig. 3 1 that tubes with packing materials 

from the economical standpoint are rarely more advantageous 

than a smooth tube in which the rate of flow has been in- 

creased correspondingly.  Only the tube which had been filled 

with 16 mm Raschig rings exhibited better heat transfer results 

than the smooth tube for the same f/ ^     value.  In this case 

also the position of the curves changes somewhat in favor of 

the tubes with packing materials, if Re is decreased.  Since 

all packing materials influence the heat transfer in almost 

the same way, it must be that from among the different types 

those would be most favorable which cause the least pressure 

loss.  However, this simple deduction is probably only valid 

up to a minimum order of magnitude of the packing material 

and pressure loss, respectively. 

4.7  Flow and Temperature Field Patterns 

The flow and temperature field patterns indicate the 

character of a flow and permit, an insight into the mechanism 

of heat transfer.  Therefore such field patterns were measured 

in the smooth tube as well as for a few insert arrangements. 

The test cross section usually was approximately 100 mm 

before the tube end; therefore the results could not be 

falsified by secondary effects.  In this case the turbulence 

promoters were arranged in the experimental tube in such a 

manner that the test plane generally was located in the 

center between two inserts.  With respect to the height of 

the inserts, measurements could only be taken from the center 

of the tube up to a distance y from the wall, corresponding 
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approximately to the disc and ring heights.  The test values 

described below usually represent the mean of two or four 

individual measurements which were determined on a perpendicular 

and horizontal plane at equal distance from the wall y. 

Since the total pressure was determined with a Pitot tube, 

the local static pressure had to be subtracted from the test 

values in order to obtain the pressure head.  At this point 

the static pressure was constant throughout the cross section 

and corresponded almost exactly to the pressure loss of the 

subsequent inserts.  The latter can be calculated from the 

total pressure loss of the experimental tube and from the 

number of inserts.  The accuracy of all velocity distributions 

was checked in such a way that the rate of air flow determined 

with the aid of the restrictor was compared with the rate of 

air flow resulting from the planimetry of the velocity dis- 

tribution over the tube cross section.  The agreement in 

general was very good. 

4.71  Velocity Distributions 

Fig. 32 shows the velocity distribution profiles of the 

smooth tube and of the tube equipped with discs of K = 5 ran 

for two Re-values in dimensionless representation.   The re- 

lation of the wall distance y to the tube radius r was selected 

for the abscissa, and the relation of the local velocity wy 

at wall distance y to the maximum velocity wmax in the tube 

axis was chosen for the ordinate. 

For the disc arrangements the form of the velocity 

profiles within the measuring range remains practically in- 

dependent of Re.  In the smooth tube this does not hold true [3]. 

In comparison to the velocity distribution of the smooth tube, 

the two other profiles are considerably more pointed.  Since 
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Fig. 32.--Velocity distributions for discs with K = 5 mm. 
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Fig. 33.—Velocity distributions for discs with K = 10 mm. 

Figs. 32 and 33.—Velocity distributions in the tube 

with disc-shaped inserts.  w  = velocity at wall distance y; 

max velocity in the center of the tube; r = tube radius; 

L1 = ring distance; K = ring height; Re = Reynolds number; 

I = comparison curve for the smooth tube at Re = 4.104. 

58 



this condition was also observed in the case of rough tubes 

in which the velocity distributions become increasingly sharper 

with increasing roughness, it is possible to conceive of the 

disc-shaped inserts as extreme roughness projections.  Under- 

standably, the most pointed profile results with the closest 

disc arrangement (L'/K = 3.92), since in this case after a 

certain intake section has been traversed the velocity field 

pattern hardly changes from disc to disc.  The flow behaves 

similar as in a rough tube, the radius of which is equal to 

the internal disc radius. 

Fig. 33 shows the results for disc arrangements with 

K = 10 mm L«/K = 3.92 and L'/K = 9.8.  For a comparison, 
4 

the curve for the smooth tube has been plotted again (Re  4*10 ) 

The discs extended from y/r = 0 to 0.4, so that test values 

are absent in this range.  At L'/K = 3.92 the arrangement with 

K = 10 mm exhibits a considerably more pointed velocity dis- 

tribution in comparison to the one with K = 5 mm.  The rela- 

tively flat curve path of w /w    at L'/K = 9.8 indicates J * y'   max 

that the velocity distribution changes considerably from 

disc to disc.  The weight rate of flow control resulted in 

the greatest error of 107» for this determination. 

The velocity distributions for the two ring arrangements 

coincide almost completely with the distribution obtained for 

the disc arrangement with K = 5 mm and L'/K = 3.92.  Fig. 34 

shows the profile for rings with K = 3.7 5 mm. 

Measurements taken at various distances from the individual 

were intended to give information on the manner in which the 

velocity distribution changes behind a disc-shaped insert. 

For this purpose a single disc (K = 5 and 10 mm, respectively) 

was introduced into the experimental tube and supported by 

low piston rings which were installed in front and behind it. 
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By displacing these inserts, the distance between the test 

cross section and the individual disc could be changed. 

A comparison of the rate of flow determination with the 

cross section integration again served for an accuracy check 

of all velocity distributions.  With diminishing distance be- 

t\ireen the insert and the Pitot tube, the accuracy of the 

measuring values decreases due to strong cross currents and 

due to the static pressure which is variable over the tube 

cross section.  The highest error amounted to 87». 

Fig. 35 shows the velocity transformation behind the disc 

with K = 5 mm.  In the disc cross section itself the velocity 

distribution will be almost rectangular.  The first useable 

profile could only be determined at a distance of 1 = 100 mm 

behind the insert.  At that point the flow again adheres com- 

pletely to the tube wall.  From here on the velocity equalizes 

very quickly over the entire cross section due to the extra- 

ordinarily strong, turbulent intermixture.  At 1 = 500 mm the 

velocity in the center flow is almost constant, while a 

greater velocity gradient occurs at the wall.  At 1 = 900 mm 

the profile has regressed somewhat again.  After a path of 

corresponding length the fully developed, turbulent velocity 

profile is attained again (curve I). 

For the disc with K = 10 mm only the measurements for 

1 =170  were useable, since the flow only adhered to the wall 

again at this point (Fig. 36).  At 1^200 mm the velocity pro- 

file has transformed to such an extent that it almost coincides 

with the one determined at the same point behind the disc with 

K = 5 mm.  In its subsequent course the velocity in the cross 

section first equalizes still more rapidly than behind the 

disc with K = 5 mm due to increased turbulent exchange pro- 

cesses.  At 1 a 900 mm, finally, the velocity profiles which 
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Distance   behind   the   disc 
x 300 mm 
° 500 " 

Referred wall distance y/r 

Fig. 35.—Velocity profiles behind a disc having an 

aperture ratio m* = 0.64 and a ring height K = 5 mm. 

Distance behind the disc 
° 300 mm 
»350 " 
"250 • 
* 100  • 
° 170 • 

Referred wall distance y/r 

Fig. 36.—Velocity profiles behind a disc having an 

aperture ratio m* = 0.36 and a ring height K = 10 mm. 

Figs. 35 and 36.—Transformation of the velocity profile 

behind an individual disc with a Reynolds number Re = 4'10 . 

I = comparison curve for the smooth tube at Re = 4*10 ; 

w , wmax> y and r as in Figs. 32 and 33. 
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have already regressed somewhat coincide completely for both 

types of inßerts. 

4.72  Temperature Field Pattern 

The temperature profiles corresponding to the velocity 

profiles of Figs. 32 and 33 are evident from Figs. 37 and 38. 

The referred overtemperature -tf according to 

£ = (t  - t)/(t  - t . ) (30) w     '  w   mxn 

was plotted as the ordinate with t as the local temperature 

at wall distance y and t .  as the lowest temperature in the J mxn r 

cross section. 

The Reynolds number considerably influences the form of 

the temperature profiles.  With increasing Re values the tem- 

perature path becomes flatter, because the heat resistance 

of the flow center decreases due to the increased exchange 

processes.  For the same reasons the curves corresponding to 

disc arrangements with L'/K = 9.8 are flatter than those for 

L'/K = 3.92. 

In Fig. 38 for discs with K = 10 mm, the profiles for 

L'/K = 9.8 are found above the curve I for the smooth tube, 

while the other two profiles for L'/K = 3.92 in the aperture 

range of the discs (1 = y/r = 0.4) are found below.  Very 

large temperature gradients occur here at the wall, while 

from there the temperatures change only little up to y/r**0.4. 

Therefore in this range the heat resistance is very small. 

These relations are very well represented by Fig. 39 

in which temperature profiles are reproduced which were de- 

termined at different points between a pair of discs for the 

arrangement with K = 10 mm and L'/K = 3.92.  In the range 

1 -   y/r = 0.4 the profiles practically do not differ.  In 
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I = comparison curve for the smooth tube at Re = 4*10 . 
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contrast, the external portions of the curves in the direction 

of flow become increasingly more flat.  Directly before the 

next disc located in the downstream direction the tempera- 

tures have almost equalized in the boundary zone.  At the 

same time, the temperature gradients at the tube wall increase 

more and more.  From this it can be concluded that in the 

case of flow media with a higher Prandtl number these turbulence 

*> 1 

Referred wall distance y/r 

Fig. 39.—Temperature distributions at various distances 

behind the all-but-last disc.  y, r and I as in Figs. 37 and 38, 

inserts do not increase the heat transfer in the same manner 

as in the case of air, since in that case the heat resistance 

of the center of flow is already correspondingly low for a flow 

without inserts. 

Fig. 40 and 41 show the shift of the temperature profiles 

at different distances 1 from a single disc.  At a distance 

of more than 1K300 mm, the temperature profile transforms in 

a very similar manner to the corresponding velocity profile. 

In the range of 1 = 300 a comparison is not easily possible 

insofar as the velocity profile at 1 = 0 deviates very much 
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Fig. 40.—Temperature profiles behind a disc having an 

aperture ratio m* = 0.64 and a ring height K = 5 mm. 

Distance behind a disc 

Referred wall distance y/r 

Fig. 41.—Temperature profiles behind a disc having an 

aperture ratio m* = 0.36 and a ring height K = 10 mm. 

Figs. 40 and 41.—Transformation of the temperature pro- 

file behind an individual disc at a Reynolds number Re = 4*10 

y, r and I as in Figs. 37 and 38. 
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from the form of the temperature profile.  In a crude ap- 

proximation one might assume about the same mechanism for the 

exchange of impulse and heat. 

In the smooth tube the temperature field pattern at 

small Reynolds numbers is greatly influenced by free convec- 

tion.  Fig. 42 shows the course of V over the cross section 
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Fig. 42.--Perpendicular and horizontal temperature dis- 

tribution in the smooth tube with a Reynolds number Re = 

3.4«103. 

of the tube in perpendicular and horizontal direction.  A 

transverse convection flow, presumably consisting of several 

partial flows, is superimposed over the main flow along the 

tube.  Therefore the temperature profile is practically sym- 

metrical in a plane through the tube horizontal to the tube 

axis, but not in a plane which traverses the tube perpendicularly. 
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4.73  Pressure Distribution 

The course of the static overpressure f\PQ   against the 

outlying area was determined longitudinally as well as trans- 

versally to the tube axis between a pair of discs for disc 

arrangements with K = 10 mm; this was done between the last 

two inserts between which the velocity profiles had also been 

determined.  This was to check the usefulness of the assumption 

on which the determination of the velocity profiles were based, 

i.e. that the static pressure does not change over the tube 

cross section. 

A probe of 2 mm external diameter, containing two pressure 

borings of 0.2 mm diameter which faced each other transverse 

to the direction of flow, served as the measuring instrument. 

It is true that measuring errors are easily possible in the 

case of strongly turbulent flow; however, the measuring 

values are reported nevertheless, since they at least provide 

a good point of reference. 

Figs. 43 and 44 show the path of /\pp as a function of 

the distance 1 behind the last disc but one for various values 

of y/r.On the basis of these measurements, the static pressure 

in the tube cross section is only approximately constant in the 

center between two inserts.  In this manner the assumption is 

confirmed which was the basis for the calculation of the 

velocity profiles for the essential static pressure.  At y/r = 

const, the static pressure in the direction of flow does not 

drop linearly in contrast to the fulljr developed flow with 

pure wall friction in the tube.  This behavior can be explained 

as follows:  An overpressure prevails before the disc in con- 

trast to the unaffected flow; behind the disc an underpres- 

sure exists due to the contraction of the flow, as can be 

clearly seen in the path of the indivic3ual curves.  However, 
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Figs. 43 and 44.—Course of the static overpressure /\pp 

between two discs as a function of the distance 1 from the 

foremost disc in the direction of flow, as well as at different 

referred wall distances y/r.  Ring height of discs K = 10 mm; 

aperture ratio m* = 0.36; Reynolds number Re = 3.5*10 . 
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more accurate data are not possible since too many unexplained 

effects coincide. 

Fig. 45 shows how the static pressure and the rate of 

flow w    change along the tube axis in one case.  Shortly 
max to 

behind the disc a velocity maximum occurs, while a minimum 

exists shortly before the disc.  Admittedly the absolute value 

of the velocity fluctuates at the most by only about 37«. 

This course of the velocity can be easily interpreted.  Shortly 

behind a disc the main flow is somewhat constricted.  There- 

fore the velocity increases.  When the main flow expands again 

in its subsequent path, the velocity decreases correspondingly. 

Shortly before the next disc the flow is constricted again; 

and the flow rate increases again. 

5.  Interpretation of Experimental Results 

5.1  Mechanism of Heat Transfer 

The experimental results show that the coefficient of 

heat transfer for turbulence inserts assumes very different 

values depending on the type of insert, and that it is not 

directly related to the pressure loss.  Therefore it appeared 

desirable to clarify the mechanism of heat transfer in the 

case of turbulence promoters still more closely.  For a 

starting point, the corresponding processes in a smooth tube 

shall be considered. 

The processes in the boundary layer are first of all 

decisive for the heat transfer from the wall to a flowing 

medium.  The greatest heat resistance of the turbulently 

flowing medium is found in a very thin layer close to the 

wall, which mainly has laminar properties.  Its thickness £ 

depends considerably upon the wall shear stress t   which 
* w 

therefore represents an important magnitude characterizing 

the flow as well as the heat transfer. 

70 



o 

40 

mmWS 

32 

3 & 
n 
m 
<D 
u 
ft u 
o 
> 
o 
Ü 
•H 
-p 
<ti 

+> 

V 
i\ L *\ 

i 

r^J/""" / ••w* 

V v] 

B 

« ■■* 

m/s o 
«     o 

H 

> 
40 

MUM 

40 mm 

Distance   1 

Fig. 45.—Course of the static overpressure /\p  and the 

velocity w    in the tube axis as a function of distance 1 be- J     max 

tween two discs in the direction of flow.  Disc height K = 

10 mm; aperture ratio m* = 0.36; referred ring distance L'/K = 

4 
3.92; Reynolds number Re = 3.5*10 . 

._,   *nf . 

m ^\^ 
in ^"N. 

<D 
U 

-P ^^\/ in ^<^ 

S
h

e
a
r 

*     ~-^^ 
0 

Referred wall distance y/r 

Fig. 46.—Scheme of the course of shear stress in rough 

tubes according to W. Nunner [l3*  a = course in the smooth 

tube with wall shear stress *£  ; b = course in the rough 

tube with wall shear stress T . w 

71 



In the case of isothermal, hydrodynamically developed 

flow in a smooth tube the pressure loss /\p is only produced 

by wall friction, while the static pressure p drops linearly 

along the tube.  The local shear stress T at wall distance y 

provoked by forces of friction also varies linearly from y = 0 

to y = r (drop of t  to  t = 0).  If the equilibrium between 

the forces of pressure and friction are considered for a tube 

section of length L, then it follows: 

l/4^   d2   /^p  =   fdLtw (31) 

or 

\< = ^4 Apd/L (32) 

and after substitution of /\p by means of Equation (1), 

respectively, 

M> - 8 rw/g 
v2 (33) 

While until now flow has been considered as an aggregate, 

more detailed individual points shall now be examined.  L. 

Prandtl [12, 22] subdivided flow into two areas:  the layer 

close to the wall with an impulse exchange mainly due to 

molecular exchange, and the center of flow in which a turbulent 

exchange prevails.  The following is valid for the so-called 

viscous wall layer: 

T = qdw /dy (34) 

as well as: 

Lw 
*l<dw7dy>  _ (35) 

for the wall itself (y = 0).  Since the wall layer is very 

thin, all characterizing magnitudes, and especially the shear 

stress, can be set as constant in this range of thickness o . 
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The velocity distribution in the two domains from the 

wall to the tube center can be represented universally by 

means of two dimensionless parameters.  These are the 

velocity ratio 

Vu+ = Wy \^r (36) 

with 

(37) 

as the so-called  rate of shear stress, as well as the dimension- 

less wall distance 

y+ = U
+y/V (38) 

i     + _  + 
formed in the manner of a Reynolds number.  If a value y  - yQ 

is given to the thickness A of the laminar wall layer, then 

Equation (38) provides the relation 

according to which b~ 1 / \/t^ changes.  This relation is of 

great importance for the subsequent considerations. 

Due to the turbulent motion in the turbulent center of 

the flow, fluid or gas particles having a certain velocity 

partly reach flow paths of a slower velocity and partly 

those of greater velocity.  For reasons of continuity, the 

exchanged mass in each partial domain of the flow must remain 

the same.  This impulse exchange has the effect of an apparent 

viscosity of the flow medium.  Therefore, similar as in 

Equation (34), the following is set for the center of flow: 

t = AT dw /dy (40) 

where A-e is the magnitude of turbulent exchange. 
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If the course of velocity is examined over the tube 

cross section (for example, Fig. 32), a few conclusions can 

be drawn with the aid of Equations (35) and (40).  In the 

center of the tube we have dw /dy = 0; in other words, the 

shear stress drops from *t  at the wall to T = 0 at the tube w 

center.  Within the layer close to the wall the velocity 

gradient is very large and approximately constant; beginning 

with the turbulent center it drops very quickly up to the 

center of the tube.  Since, however, the shear stress de- 

creases only slowly from the value t    at the wall, A- must w t 

be considerably greater than n. 

The Prandtl boundary layer theory has been further re- 

fined over the course of time.  Thus, for example, E. Hofmann 

[23] divided the flow into three zones.  The final step was 

taken by H. Reichardt [24-27] when he eliminated all imagined 

boundaries between the different zones and assumed that the 

turbulence fades out continuously up to the tube wall.  Sub- 

sequent considerations in this article, however, are only 

based on the simple theory of two zones, since the calcula- 

tion would otherwise become too complex. 

In the smooth tube the two flow layers affect the heat 

transfer in such a manner that the heat in the layer close to 

the wall is transported only by heat conductance and in the 

center of flow only by turbulent heat exchange.  In the wall 

layer the following is valid, with T  for the absolute tempera- 

ture at wall distance y, with respect to the heat flow density 

q transverse to the direction of flow: 

q = X  dTy/dy (41) 
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and for the heat flow density q  at the wall 

q  = A(dT /dy)  . (42) Mw        y    y=0 

Since q remains practically constant in the wall layer and 

q = q is valid, we therefore have according to the simple 

Prandtl theory q ~\jb and according to Equation (39), ap- 

proximately qw~ \/t w- 

The relation resembling Equation (40) results for the 

heat flow density in the turbulent center 

q = c A dT/dy (43) H   P q  ' 

with A as the magnitude of turbulent heat exchange. The 

exact relationship between the turbulent impulse and heat 

exchange is so far unknown.  It seems reasonable, however, 

to consider the relation A?IA  over the tube cross section 
*>' q 

as constant, although strictly speaking this does not hold true. 

In the case of an equivalence of the impulse and heat exchange 

mechanisms, we would have Af/A  = 1,  which had first been 

assumed as valid by 0. Reynolds and later by L. Prandtl, E. 

Hofmann and W. Nunner in their theoretical considerations. 

It follows from the temperature profile (e.g. Fig. 37) as 

well as from Equations (42) and (43), similar to the compari- 

son of A-y and n, that c A  must be considerably greater than L P q 
the molecular heat conductivity coefficient X .According to 

E. Hofmann [23] the heat resistance of the zone near the wall 

(including the laminar-turbulent transition zone) with air 

flow amounts to about 707» of the total heat resistance.  This 

portion still increases more with increasing Pr.  Thus the 

greatest portion of the total heat resistance is located in 

the viscous wall layer as far as substances with not too small 

a Prandtl nurober are concerned.  However, since the wall shear 
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stress tw represents a measure for the thickness ä  of this layer, 

t     is an important effective magnitude for all theoretical 
w 

heat transfer equations.  Admittedly it occurs rarely directly, 

but indirectly it enters into all of these equations via the 

coefficient of resistance >V, since ^ and t^  are inter- 

related by Equation (33).  This is also true for Equation 

(16) by W. Nunner, which gives a good insight into the prac- 

tical possibilities. 

W. Nunner started with the same fundamental assumptions 

as M.   Prandtl, but he used a shear stress course for the rough 

tube which differed from that of the smooth tube and which 

is explained as follows.  At the tube wall itself the flow 

behaves similar as in a smooth tube at equal Reynolds number, 

i.e. due to wall friction shear stress t _ occurs directly 
wo 

at the wall just as in a flow which has not been disturbed 

by roughnesses.  However, this pure wall friction only repre- 

sents a part of the total tube resistance.  At some distance 

from the wall — approximately at the boundary of the viscous 

wall layer--the roughnesses begin to affect the flow by in- 

creasing the tube resistance by a certain amount due to sep- 

aration phenomena.  Consequently the shear stress increases 

very steeply at the boundary of the viscous wall layer to 

attain a value which practically corresponds to the value 

Z      calculated according to Equation (32).  From there to 
w 

the tube center the shear stress then again drops to zero 

(Fig. 46).  On the basis of this shear stress course, f^ 

and *E       enter Equation (16) in the form of very important 
wo 

magnitudes which become identical for the smooth tube; for 

from Equation (33) the following results 

Zw = 1/84/ o_w2,   rwo - 1/8 v o r' 2        _       _   , /o  ..)        -  w2 (44) 
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with index 0 for the smooth and without index 0 for the rough 

tube.  Thus, in Equation (16)  «¥/lfQ = *v/Cvo  is valid. 

In the final form of Equation (16) the shear stress does not 

appear any longer only because it can be better expressed by 

easily measurable magnitudes.  As can be seen From Equation 

(16), the effect of roughnesses in a flow is similar in manner 

to an increased PrandtL number. 

The differences in Pr = v</a essentially originate from 

different viscosities of the substances.  If Pr increases by a 

certain amount due to an increase in viscosity, then (the 

dimensions of the tube remaining the same) the velocity must 

be increased by the same amount if Re = w d/v* is to remain 

the same.  With an equal Re, the thickness o of the wall 

layer remains unchanged; but the turbulent exchange increases 

due to the greater velocity.  Consequently, the heat resis- 

tance of the turbulent center drops, while the heat resistance 

of the viscous wall layer remains the same.  The turbulent 

exchange of the center flow is also increased by roughnesses, 

but the wall layer is practically not influenced at all. 

As was to be expected, the heat transfer could not be 

satisfactorily reproduced by Equation (lö)neither in the case 

of large disc inserts or  with the remaining turbulence pro- 

moters.  L. Prandtl already pointed out that his heat transfer 

equation was only valid when the pressure loss develops only 

by friction at the tube wall [28].  The result for Equation 

(16) is analogously that it is only applicable with the 

existence of the relationship between shear stress and pres- 

sure loss as given by Equations (32) and (33), respectively. 

This relationship is made possible in the case of a fully 

developed velocity profile of the flow, a linear pressure 

drop along the tube, and a constant pressure over the tube 
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cross section.  If, however, the flow is disturbed only fTom 

time to time by individual wall projections or other inter- 

ference bodies (i.e. by turbulence inserts of any type), then 

these assumptions no longer hold true due to the high form 

resistance of the inserts.  Now no known relationship exist 

any longer between the shear stress at the edge of the turbulent 

center—which shall now be designated by L,--and the pressure 

loss.  Furthermore, the wall shear stress no longer has the 

value t  , but the unknown value T   .  The shear stresses V 
wo w w 

and c, probably depend on the type and arrangement of the 

turbulence producers in an unclear manner and would hardly 

be constant along the tube. 

From the comparison of the velocity and temperature 

profiles with disc-shaped turbulence inserts it was concluded 

that the heat resistance of the turbulence center decreases 

considerably upon interference with the flow due to turbulence 

inserts.  Therefore, a still greater part of the total heat 

resistance must be located in the layer near the wall in the 

case of tubes with turbulence inserts than in the case of 

the smooth tube.  Since  X  represents a measure for a  and 
w   ^ 

thus also for q , a theoretically logical relationship will 

also exist between the heat transfer coefficient and the wall 

shear stress for the case of turbulent flow.  With this, the 

the difference in magnitude of the heat transfer coefficient 

depending on the type of insert could also be better inter- 

preted.  An encouraging factor for such an investigation 

was the finding that \u varied with Re for all experimental 

arrangements in the same manner as in the smooth tube; for 

it can be expected on the basis of this that the average 

wall shear stress in tubes with inserts also depends- on Re 

in an equal fashion äs in the smooth tube.  This also pro- 
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vieles a possibility of control for the measured wall shear 

stresses.  For these reasons ?   was measured in tubes with w 

turbulence inserts. 

5.2  Fundamentals of the Measuring 
Instrument for Wall Shear Stress 

The principle of measuring to determine the wall shear 

stress according to H. Ludwieg [29] rests on the fact that a 

local heat transfer coefficient is determined (^ö) which ac- 

cording to theory is in uniform relation to the wall shear 

stress t .  For the measurements which are to be undertaken 
w 

during isothermal flow a small instrument is utilized which 

is installed in the tube wall and which gives off heat to 

the flow layer near the wall.  It follows from the difference 

between the surface temperature t  of the heated spot of the 

wall and the undisturbed flow temperature tL, the heating 

output Q  and the heating area F  }f the measuring element 

that: 

«. =  _ü j_ (45) 
0   FE(tD - V 

From the heat transfer coefficient 0«^ and the width s of the 

heated spot along the direction of flow, a local Nusselt 

number Nu„ = Ol s/A.  of the measuring instrument results 
o    o 

for which the relation 

NuM~?
l/3 (46) c    w 

holds true'according to theoretical considerations [29]. 

AH of the secondary effects which are neglected in the theory 

can be eliminated by calibrating the instrument during fully 

developed flow in the tube. In order to be able to utilize 

the relation Nu„ = f(T  )—determined by calibration—for o       w 

flqws with very large pressure gradients in the direction of 
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flow (such as for example in the case of turbulence promoters), 

care has to be taken that the heat boundary layer originating 

from the measuring point projects as little as possible from 

the viscous wall layer.  For this purpose a construction type 

of the instrument according to M. Herbeck [30] is to be 

considered mainly, the heat source of which is as narrow as 

possible in the direction of flow. 

Figs. 47 and 48 show the measuring instrument which was 

utilized.  A platinum-iridium band a (compare Fig. 48) of 

0.007 mm thickness, 0.1 mm width and 10 mm length serves for 

a heating element, which is mounted with its length transverse 

to the direction of flow.  The band is cemented onto a bake- 

lite support b by means of a very thin layer of lacquer. 

The two bakelite bodies b and d represent a part of the 

internal tube \%rall with their surfaces.  Careful operation 

of the instrument and the tube wall makes possible an undis- 

turbed flow towards the measuring point. 

The heating element is connected to the electrical circuit 

over two copper electrodes c which are sunk into the bakelite 

body d and which are in contact with the heating element a by 

means of pressure exertion.  Thus the heating element serves 

not only as the source of heat but also as a resistance 

thermometer.  The element forms a partial resistance of a 

Wheatstone bridge circuit which consists of precision re- 

sistances, a mirror galvanometer for a zero indicator and a 

storage-battery cell for the source of power.  The total 

current flowing through the bridge circuit can be regulated 

with the aid of a slide rheostat and can be read off from an 

ammeter with a measuring accuracy of 0.27„ of the full deflection. 

The experimental tube was provided with turbulence pro- 

moters in the same manner as in the pressure loss and heat 
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Fig. 47.—View of the measuring instrument for shear 

stress.  a = tube spacer with nipple for the introduction of 

the measuring instrument; b = shear stress measuring instru- 

ment; c = surface of the measuring instrument forming a part 

of the tube wall with the heating element. 

mm 

Fig. 48.—Sketch of the shear stress measuring instrument, 

a = heating element; b = bakelite base; c = electrode; d = 

bakelite body; e = direction of flow. 
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transfer determinations.  The heating element had an over- 

temperature of 25° in comparison to the unheated air 

^L = 20°C) in all experiments and its electrical resistance 

was checked before every experimental series in the unheated 

state.  This overtemperature corresponded to an increase of 

the resistance of about 5% as could be. found with the aid of 

the temperature coefficient of the platinura-iridium alloy. 

Before the measurement the variable bridge resistance was 

adjusted in such a manner that the heating area exhibited 

this resistance at the compensated bridge.  Since the heat- 

ing element cooled off more or less depending on the rate of 

air flow prevailing near the wall, the bridge current had to 

be varied until the bridge had again been compensated. 

Fig. 49 shows the standardization curve of the measuring 

instrument as recorded in the smooth tube and as checked 
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Fig. 49.—Calibration curve for the wall shear stress 

measurement.  T  = wall shear stress; I_ = current intensity 
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of the heating wire; RD = wire resistance; t -t  = 25° over- 

temperature of the wire compared to the air in the experi- 

mental tube. 
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several times between the experimental series, which makes 

possible a reading of the wall shear stress T    as a function 

of the local Nusselt number Nu„ of the heating element over 
o 

the entire determinable range of Reynolds numbers.  For the 

abscissa the 1/3-exponent of the wall shear stress is plotted 

which was calculated according to Equation (32) from a pres- 

sure loss measurement undertaken simultaneously with the elec- 

trical measurements.  The magnitude I R_/(t  - t ) Diot^-ed 

on the ordinate represents the Nusselt number of the heating 

element up to a constant; I  here designates the current 

intensity flowing through the wire and R„ denotes the wire 

resistance.  The wire temperature always amounted exactly to 

45°C.  The standardization curve permits the great in- 

1 h fluence of the free convection for  T   =0 (weight rate 
w 

of flow equals zero), which has an unfavorable effect on the 

accuracy of very small i-   -values with low weight rates of J J w 

flow under certain circumstances. 

The standardization curve according to Fig. 49 was used 

for a base for a determination of t     in the experiments with w 

turbulence promoters.  The local course of the shear stress 

between a pair of turbulence producers was determined by a 

displacement of the entire group of inserts at constant 

weight rate of flow (identical to constant Re) and every 
3 

time with three different Reynolds numbers (Re =4*10 , 

104 and 4*104). 

5.3  Results of the Wall Shear 
Stress Measurement 

5.31  Baffle plate Inserts 

5.311 Course of the Wall Shear Stress Along the Tube:— 

Baffleplate inserts were investigated first, since they permit 

the expectation of the best measuring values due to the rela- 
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lively distinct state of flow.  For an example the course of 

the shear stress as a function of the plate distance 1 in 

the direction of flow'is shown in Figs. 50 to 52 for various 

experimental series. 

All of the curves exhibit a few peculiarities independent 

of the type of plate and the arrangement.  Directly behind the 

plate  ^  rises very rapidly to its maximum value and after- 1       w 

wards drops again just as rapidly.  Shortly before the next 

plate V    starts to increase again.  At larger referred dis- 
^ w 

tances L»/d  a zone with almost constant shear stress forms 

after the maximum and the subsequent minimum. 

This course of the shear stress permits the following 

interpretation of the behavior of flow.  The flow rate is 

rather high at 1 = 0, since the plates partly close off the 

cross section.  Behind the plates the flow is further con- 

stricted up to a point which presumably coincides with the 

shear stress maximum.  Subsequently the flow expands into the 

space between two inserts with concurrent great retardation, 

i.e.  T  decreases.  The renewed constriction of the flow 
w 

before the next plate is always indicated by the steep in- 

crease of the shear stress. 

Since t  is a measure for the heat flow density q  through 
w 

the wall, the local heat flow must vary periodically along 

the tube just as G    .  In subsequent considerations, average 

values over the entire tube length L shall be set as a base 

for the influential magnitudes.  Thus, an average wall shear 

stress t  was also determined in all cases by a planimetry 
wm 

of the corresponding curves. 

5.312  Dependence of the Average Wall Shear Stress on the 

Reynolds Number;—In all experiments described in the follow- 

ing the same experimental tube and the same flow medium (at 
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Fig.  50.—Course for a baffleplate diameter do = 30 mm, 

a referred plate distance L'/dg = 1.6 and a Reynolds number 

Re = 104. 

20 mm   i0 49 
ESS    Distance   1 

wm 
W 60 SO mm Sä 

Distance   1 

Fig, 51.—Course for a baffleplate diameter d  = 30 mm, 

a referred plate distance L'/dg = 3.2 and a Reynolds number 

Re 10* 

° 0,H 

■a  kfjfnt' 

»   0,12 

Fig.  52.—Course for a 

baffleplate diameter d„ = 20 mm, 

a referred plate distance 

L'/dg = 9.8 and for different 

Reynolds numbers Re. 
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the same temperature) were always used, so that the Reynolds 

number Re only depended on the average rate of flow w.  Thus 

the following is valid for the smooth tube according to 

Equations (7) and (44): 

fw = (£4i£ 2$) Re1'75 (47) 
d 

with a constant parenthetical expression. 

Since the average Nusselt number in all turbulence pro- 

moters varies with the Reynolds number in the same manner as 

in the smooth tube, it was reasoned that the average wall 

shear stress f      in tubes with turbulence promoters must 
wm 

depend on Re just as in the smooth tube.  Thus the following 

is also valid: 

T  «Re1,75 (48) 
wm 

Fig. 53 shows the course of ^   as a function of Re.  The 
° wm 

lines drawn through the test points have the slope of 1.75 

and thus confirm Equation (48) very well. 

5.3 13  Dependence of the Heat Transfer on the Average 

Wall Shear Stress;—Under the given basic conditions (tube 

dimensions always remaining the same and practically constant 

magnitude of substance), the following results according to 

Equation (14) for the smooth tube traversed by flow: 

Nu = C^Re0,786 (49) 

with C1 for a constant.  An unusual path can now be followed 

and the Reynolds number (really the velocity) in Equation (49) 

can be substituted by the shear stress <  according to Equa- 

tion (47).  Then the following results for the smooth tube 

86 



2    # 6   8 W        I t 
IFS7R53I 

Reynolds number Re 

Fig. 53.—The average wall shear stress ^^ as a function 
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equalization curve through the test points for the baffleplate 

inserts. 
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with C„ for a new constant: 

• 0.45 
Nu = C *U-*3 (50) 

£. W 

and, similar as before, for tubes with turbulence inserts: 

Nu = C,t:0-45 (51) 
3  win 

Here Co is another constant.  It could be considered as some- 

what annoying that dimensionless factors are in a relationship 

with the wall shear stress in Equations (47) to (51) (i.e. 

the constants are not dimensionless).   However, these equa- 

tions are not generally valid, but only under the assumption 

of constant substance magnitudes and constant tube dimensions. 

Equation (50) is represented by straight line I for the 

smooth tube in Fig. 54; constant C„ resulted from the measur- 

ing values.  In addition, Fig. 54 contains all test points 

for the plate inserts; they are grouped around the straight 

line II within a small range of scatter and with a slope of 0.45, 

Thus Equation (51) is confirmed.  In other words if Nu is 

related to  ^wm> the differences, which occurred in Nu for a 

certain Reynolds number depending on the type and arrangement 

of the inserts and which previously had been hardly explainable, 

disappear.  It is surprising that the type and arrangement 

of the plate inserts have no noteable influence on Nu for 

wm ~ const even under very different conditions.  It is clear 

that curve I for the smooth tube must be attained again in 

the case of very large plate distances (L' /d —> ocj and also 

with an increasing aperture ratio (m* —> 1).  It is true that 

this tendency can be recognized from the plotted measuring 

Values for twm = const; but the Nu values differ only little 

from each other.  Therefore it would be useless to cause the 

flow to be too turbulent by means of inserts, for example by 
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a considerable increase of the plate diameters; for the 

effect of the intensity of turbulence is only small in com- 

parison to the influence of the wall shear stress, i.e. a 

favorable influence on the flow ii direct proximity of the wall. 

The generally higher position of curve II in Fig. 54 in 

comparison to curve I can be understood for the following 

reasons.  The heat resistance of the central flow, which 

amounts to about 30% of the total heat resistance in smooth 

tubes traversed by air flow according to E. Hofmann [23], 

is very much decreased by the plates acting as turbulence 

producers.  An intensive intermixing of the air caused by 

continuous re-formation of the velocity profile and strong 

separation phenomena is superimposed on the turbulent ex- 

change motion which was present originally.  Since the 

impulse and heat exchanges are related to each other, the 

heat exchange is increased with an increased impulse exchange. 

5.314 Relation Between the Total Pressure Loss and the 

Wall Friction Pressure Loss»—The pressure loss of a flow 

can be imagined to be composed of the form resistance of the 

inserts and the wall friction resistance which influences 

the wall shear stress.  If a coefficient of resistance ^r 

including only the pressure loss caused by wall friction is 

defined for a flow with turbulence promoters according to 

Equation (33), then we have 

f„ '  8 ^/o»2 (52) ir     wm' 

This resistance coefficient *£, depends on L'/dg and m* in a 

manner similar to the resistance coefficient *f.  unfortunately 

no simple empirical equation can be given for these relations 

from the measuring values which were obtained. 
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Table 4, in which all measuring values for pressure loss 

and shear stress are compiled once more, contains a column 

for *¥/**'.  Since the proportion of wall friction resistance 

in the total pressure loss increases with increasing values 

of L'/d_ and m*,   Y /V increases correspondingly.  The 

tf   I \jf  values are found within a range of about 6 to 307.. 

5.32  Disc Inserts 

In comparison to the baffleplate inserts, somewhat more 

unfavorable circumstances exist for the disc inserts with re- 

spect to a wall shear stress determination, insofar as blind 

pockets of the flow occur near the wall, although the flow 

in the case of discs is perspicuous in the center of the tube. 

From the relation of the Nusselt number to the Reynolds number 

(compare Figs. 8 and 9) it can be concluded here too, however, 

that on the average the flow in the zone near the wall obeys 

laws similar to flow in a smooth tube.  Presumably the wall 

shear stress in the case of small disc distances is only pro- 

duced by turbulences which develop between each disc pair from 

the wall up to an approximate disc height K.  In the case of 

large disc distances, blind pockets appear near the disc which 

are filled with circulating turbulences; outside of these 

zones the main flow adheres to the tube wall.  The turbulences 

which are suppressed by internal friction and wall friction 

are continuously supplied with new energy from the main flow. 

Only occasionally do they circulate in a stationary manner, 

but the main stream periodically carries them away.  This 

can cause small erroneous readings in the measuring instru- 

ments since the latter are not able to keep up with very 

short-term fluctuations. 
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5.32 1  Course of the Vail Shear Stress Along the Tube;— 

Figs. 55 and 56 show the course of £"r as a function of the dis- 

tance 1 behind a disc for discs with K = 5 mm in the case of 

two different L'/K values.  The Reynolds number exerts no 

significant influence on the path of the curves.  The re- 

production of other t ,1 curves for disc inserts was dis- 
w'    . 

pensed w;ith since they offered no further peculiarities in 

comparison to Figs. 55 and 56. 

If the discs adhere unobjectionably to the tube wall, 

then 1    has to disappear directly before and after them. 

While the course of the wall shear stress always indicates 

this tendency, it does not attain a value of zero directly 

at the inserts but exhibits another steep rise.  This might 

be explained by the fact that the discs do not adhere tightly 

to the wall and that due to the large pressure differences 

before and after the inserts, small partial flows pass between 

the wall and the disc with great velocity.  Still, this rise 

has no great influence on the average value ^  of the wall 

shear stress.  Aside from this side-effect, X     rises steeply w 

to a maximum behind a disc which possibly occurs at a point 

where the contraction of the main flow is also greatest. 

Subsequently  Tr first drops a little in order to remain 

almost constant over a longer or shorter section depending on 

the disc distance L' and finally disappears almost completely 

only shortly before the next disc. 

5.322  Dependence o£ the Average Wall Shear Stress on 

the Reynolds Number;--Fig. 57 shows the course of the average 

shear stress *C   in the tube with disc-shaped inserts as a 
wm 

function of the Reynolds number.  This slope in these curves 

also amounted to 1.75 so that it could be assumed that the 
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Fig.   55.—Course  with  a  disc  height  K   =   5  mm,   an   aper- 

ture   ratio  m*   =   0.64,   a   referred  ring  distance  L'/K   =   9.8, 
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and  a Reynolds   number Re   =   10   . 
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Fig. 56.--Course with a disc height K = 5 mm, an aper- 

ture ratio m* = 0.64, a referred ring distance L'/K = 32.7 

4 
and a Reynolds number Re = 10 . 

Figs. 55 and 56.—Course of the wall shear stress X w 

as a function of the distance 1 from a disc in the direction 

of flow for disc-shaped inserts. 
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lFh77t.57i  Reynolds number Re 

Fig. 57.—The average wall shear stress "^ as a function 

of the Reynolds number Re for disc-shaped inserts with an 

aperture ratio m* =0.64 having different referred ring dis- 

tances L'/K and a disc height K = 5 mm. 
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Fig. 58.—Course of the wall shear stress t^  as a func- 

tion of the distance 1 from a ring in the direction of flow 

for ring-shaped inserts with a ring height K = 3.7 5 mm and a 
4 

referred ring distance L'/K^IO for a Reynolds number Re = 10 . 
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measurements are not essentially inhibited by unstationary 

processes. 

In tubes with disc inserts at K = 5 mm, Z       at equal Re 

is approximately equal to the wall shear stress Tw in the smooth 

tube.  This was the most important assumption which W. Nunner 

made in the derivation of the theoretical heat transfer 

equation for rough tubes; thus it is being confirmed with this 

new determination.  Especially it can be assumed that this 

assumption is also valid for still smaller wall projections. 

However for the discs with K = 10 mm and 12.5 mm it can no 

longer be satisfied. 

Table 5 once more shows all of the important measuring 

results for resistance for the tube with disc inserts.  The 

relationship between Nu and X.       for these and all other in- 1 wm 

serts will be generally discussed later in Section 5.36. 

5.33  Ring Inserts 

The shear stress ?    has been plotted in Fig. 58 as a w * 

function of the distance 1 for a concentric ring type (ring 

height K = 3.75 mm).  Directly below the rings X     attains 

generally rather high values and between them it drops to 

low values.  Due to the pressure difference before and after 

the rings, a part of the air flows through the gap between 

the tube wall and the ring at high velocity and thus causes 

the high shear stress near the rings.  Presumably these 

partial flows are diverted from the wall tonrards the center 

of the tube due to the underpressure, in such a manner that 

the velocity, and thus  ^ , near the wall becomes small over J ' w' 

a large zone between a pair of rings. 

Evidently it is a coincidence that these ring inserts 

(L'/K*10) and the discs with K - 5 mm with a small referred 
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distance (L'/K^IO) result in the same average wall shear 

stress ^  .  Both inserts projected almost equally far into 
vm 

the tube; but the discs adhered tightly to the wall, while 

the rings were separated from the wall by a gap of 2.7 5 mm width. 

Table 6 shows data of the shear stress and resistance for both 

ring inserts. 

Table 6 

Compilation of the Shear Stress Measuring Values for 
the Tube with Ring-Shaped Inserts 

Ring   Referred Aver. Total 
Height    Ring   Reynolds Vail Shear  Frict.  Frxct.  Ratio 

K     Distance   Number Stresst    Coeff.  Coeff.  *r / Y 
I//K       Re       kp/m2      Tr     f A 

3.91*10* 0.0720 
3.75     « 10    1 .03*10.! 0.00606 

3.99*10 0.00110 

3.95*10* 0.0435 
2.25     »10    1.02*10^ 0.00359 

3.95'IQ-5 0.000618 

0.0336 0.58 5.8 
0.0411 0.542 7.6 
0.0492 0.555 8.92 

0.0198 0.335 5.9 
0.0245 0.320 7.66 
0.0282 0.35 8.05 

5.34 Propeller Inserts 

In the propeller-shaped inserts ^w remains almost in- 

dependent of distance 1.    Near the inserts the values 

scatter badly.  The Nu, rm curves for the propeller dis- 

tances L« = 50, 327 and 980 mm are generally 707. above the 

Nu. *£  curve for the smooth tube. 
'  w 

Due to the twist caused by the inserts, the flow ap- 

proaches the surface of the measuring instrument for shear 

stress at an angle rather than parallel to it.  This angle 

varies somewhat with 1, but otherwise has the order of mag- 

nitude of the angle of incidence of the propeller vanes. 

According to H. Ludwieg [29] the shear stress instrument in- 

dicates lower values in the case of oblique flow than in the 

case of parallel flow.  In the experiments described here the 

sensitivity of the heating element towards the direction of flow 
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was especially high due to its dimensioning.  For this reason 

a reproduction of the wall shear stress determinations is omitted. 

5.35 Ball Packings 

In packing the experimental tube with balls care was taken 

that the latter did not touch the heating wire but that they 

were nevertheless deposited normally near the measuring in- 

strument.  Due to the oblique flow approach of the heating 

element and other coincidences based onthe nature of the 

filling, measuring errors can occur easily.  Therefore several 

test points were repeated for a control after the tube had 

been entirely refilled with balls.  The results fitted well 

into the other measuring values.  The measuring range extended 

from Re «1000 to »10, 000. 

The wall shear stress increases more steeply than with a 

power of 1.75 in the case of increasing Re.  This is not espe- 

cially astonishing since the path of the Nu,Re curve in this 

area is also steeper than in the smooth tube according to 

Fig. 30. 

5.36 Relation between Heat Transfer and 
Average Wall Shear Stress 

Fig. 59 shows the course of Nu as a function of 1 
wm 

for the following inserts:  discs with K = 5 mm as well as 

L'/K^IO andä18 (this arrangement was prepared later only 

for the shear stress measurements);  discs with K = 10 mm and 

L»/K*10; two ring inserts (L' /K <* 1 0) ,and a packing with 

12 mm stone balls.  The average Nusselt number of all of these 

inserts can be represented by a single curve with the aid 

°f ^wra' which again confirms Equation (51) and around which 

there is relatively little scattering of test points. 

For purposes of a clearer view, other measuring values 

have not been entered into Fig. 59 (for example, for disc 
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Fig. 59.--The average Nusselt number Nu as a function of 

the average wall shear stress X  for disc- and ring-shaped wm to    * 

inserts as well as for a ball packing»  K = disc and ring 

height, respectively; L' = ring distance. 

3 
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resistance ^/H* 

Fig. 60.--The average Nusselt number Nu as a function of 

the referred coefficient of resistance f/l*  for disc-shaped 

inserts at a Reynolds number Re«4«10 .  I = theoretical 

course for rough tubes according to Equation (16);  K = disc 

height; m* = aperture ratio; the numbers written near the 

test points denote rounded-off values of the referred ring 

distances according to Table 1. 
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arrangements with K = 5 mm and 10 mm at higher L'/K values). 

These values are found between curve I and the equalization 

curve through the test points.  This can be explained by the 

fact that curve I for the smooth tube must be reached with 

increasing L'/K (L'/K —> oo) and m* —> 1.  The measuring values 

for propeller inserts are also found between the two lines. 

In the follo\tfing only the results cited in Fig. 59 will be 

taken into account since they are best suited for the sub- 

sequent considerations. 

It is very informative that the Nusselt numbers even in 

the case of small ring-shaped inserts (K = 2.25 mm, L»/K  10) 

for t  = const, are of the same order of magnitude as in 

packing materials.lt might have been assumed, actually, that 

the packing materials are better able to cause the flow to be 

turbulent than the rings.  Since this is not true, it is 

apparent that at an equal "t       even a moderate turbulence 
^     wm 

production already increases the heat transfer to a value 

which presumably can no longer be surpassed by any type of 

turbulence producer.  The equalization curve entered into 

Fig. 59 might represent this upper limit.  In the following 

it will now be investigated why the Nusselt number is able to 

assume almost three times the values of a smooth tube for a 

certain wall shear stress in the case of turbulence promoters. 

In rough tubes (at Re and Pre = const.) for large *tV *f 

values, i.e. for a certain shear stress ratio  t / C  , Nu 
w'  wo' 

asymptotically approaches a final value according to Equation 

(16) which is almost three times the Nusselt number at  f/ T  = ' 

(Fig. 60).  If  t  (and thus  T/f  also) continues to increase, 

then the heat transfer finally can no longer improve since 

the greatest part of the heat resistance is then in the vis- 

cous wall layer.  A similar situation is true for the turbulence 
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promoters for which Fig. 59 is valid.  Instead of an equal 

Reynolds number, an equal wall shear stress t   is assumed 

here again for comparison purposes.In these turbulence pro- 

ducers, too, the heat transfer evidently cannot be more than 

tripled compared to the smooth tube even by the strongest 

turbulence production which corresponds to a high shear 

stress T, at the start of the turbulent center flow.  If k 

the fundamental assumption for Equation (16) could be re- 

tained, then the heat transfer could also be calculated 

with Equation (16) for turbulence inserts if in addition to 

the average wall shear stress t  a reasonably averaged shear ° wm J 

stress t.  along the tube would be known which occurs out- ran 

side of the turbulent center and which would thus represent 

a measure for the turbulence in the center. 

Finally, Fig. 54 for the plate inserts is referred to 

for a comparison.  For plate inserts at ^  = const, average * * wm 

Nusselt numbers result which are 45% higher than in the smooth 

tube, while this increase amounts to about 1507<, for other 

turbulence promoters (compare Fig. 59).  At first it is sur- 

prising the Nu values attained in the case of large plates 

with small distances L' and for a certain %       are not as wm 

high as in the case of small disc and/or ring inserts.  The 

reason can be found in the fact that the turbulence produced 

by the baffleplates cannot advance so close to the wall 

since this is wher.e the main flow is present.  On the other 

hand, the disc and ring inserts mainly influence the zone 

near the wall. 

5.37  Effect of the Prandtl Number 

In contrast to flow in a smooth tube, turbulence inserts 

increase the turbulent exchange, while the molecular exchange 
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remains approximately equal.  Consequently the heat transfer 

is increased in a similar manner as in a full}' developed tube 

flow by an increase of the Prandtl number.  For a comparison 

of these two analogous influences, the wall shear stress shall 

also be established here as an important flow magnitude, which, 

however, can only be done in a good approximation.  For tubes 

with inserts a Prandtl number can be determined from Nu at a 

certain *C       value which has the same effect on the heat 
wm 

transfer in flow through smooth tubes as in the case of the 

presence of inserts.  Accordingly, at a certain L      , the 1 wm 

turbulence promoters cited in Fig. 59 influence the heat 

transfer approximately similar as a Prandtl number of six 

times the value, propeller inserts approximately three times 

and baffleplate inserts approximately two times as great a 

Prandtl number. 

If a flow medium of P.r * 0.72 is turbulently circulated 

in a tube with inserts, then the increase of the heat transfer 

can be approximately calculated on the basis of the given 

data and the cited experimental values of Section 4.  Ac- 

cordingly, the ratio (Nu/Nu )^  _ ,„  for air with Pr = 0.7 2 
'      o  Pr=0.72 

is determined first, for instance from Fig. 10, for the cor- 

responding inserts.  Before this ratio is transposed to another 

flow medium, it must be corrected in case Nu still varies with 

Pr at Re = const.  The empirical heat transfer equations are 

almost exclusively valid for certain ranges of Pr and there- 

fore cannot be utilized over large ranges of Pr in these con- 

siderations.  A representation of E. Hofmann [23] gives a 

rather good description how Nu depends on Pr at Re = const. 

If B. and B„ designate values which supply the ratio with 

which the Nusselt number increases when the Prandtl number 

at Re = const, is increased for once from 0.72 to b«0.72 and 
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(Mu/Nuo)pr = gi (NuAMuo)pr=()<72 (53) 

another time when the true Prandtl number Pr is increased to 

b Pr (with b as an arbitrary factor), then we have 

B, 

*i 
The quotient B„/B. in the range 0.1 < Pr < 10 is approximately 

equal to one and assumes considerably smaller values with very 

large Pr values. For Pr < 0.5 the conditions are not as well 

comprehended by Equation (53), since the influence of t 

decreases with decreasing Pr.  However, since flow media with 

small Prandtl numbers still exhibit a high heat resistance 

within the center flow, turbulence inserts of every type 

would have to have the most favorable effect for these cases. 

6.  Separating the Concepts of Turbulence 
Inserts and Roughnesses 

Reference has already been made to the fact that fre- 

quently no clear differentiation is made in literature between 

turbulence inserts and roughnesses, because this is connected 

with certain difficulties.  Knowledge on the flow and heat 

transfer processes in rough tubes has been greatly expanded by 

the investigations of tf. Nunnert [l]  so that it seems more 

readily possible to delineate a differentiation between rough- 

nesses and turbulence promoters on the basis of the inter- 

relationships for rough tubes.  For example, if the heat 

transfer in tubes which are traversed by an air flow and in 

which wall projections point into the flow takes place in a 

manner satisfying the theoretical heat transfer equation for 

rough tubes (Equation [16]), then evidently roughnesses are 

involved; otherwise, the obstructions shall be denoted as 

turbulence inserts.  Using this definition as a base, it shall 

be determined whether the disc-shaped inserts under investiga- 

tion shall be considered to be roughnesses or turbulence 

promoters. „n_ 



Fig. 60 shows the Nu values of all disc arrangements for 

Re = 4*10  as a function of the referred resistance coefficient 

i / |0-  Test points for the same type of disc are intercon- 

nected by curves; the numbers at the test points indicate thf» 

L'/K values.  The broken curve I corresponds to Equation (16). 

According to Fig. 60, the measuring values for discs with 

m* = 0.64 and L»/K*4 to -» 20 are well comprehended by Equa- 

tion (16); these insert arrangements thus can be considered 

roughnesses.  On the other hand, in the case of large L»/K 

values the test points deviate considerably from the theore- 

tical curve for rough tubes, and they do so more for small 

aperture ratios than for large ones.  Disc arrangements with 

m* < 0.64 also no longer act as roughnesses, just as it re- 

sulted from wall shear stress measurements.  For it was found 

that 'cwm  for disc arrangements with m* = 0.36 and 0.25 

was not nearly as large any more when Equation (16) was used 

for a base.  The point of intersection of the curves which are 

valid for these aperture ratios with the theoretical curve I 

in Fig. 60 therefore has no close relation to the theory which 

has been developed. 

It can easily be explained why Equation (16) is no longer 

valid for the case of small disc heights but large disc dis- 

tances (m* = 0.64 and 0.85; L«/K > 20).  For this purpose the 

true flow processes have to be compared with those which are 

the basis for the derivation of Equation (16) for rough tubes. 

The main assumption for Equation (16) was a constant shear 

stress progressing along the tube as a function of the tube 

cross section according to Fig. 46.  However, for large disc 

distances such a course of the shear stress does not definitely 

adjust itself.  It is true that the wall shear stress  f 
w 

remains approximately constant over a fairly lnng section along 
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the tube, and the average wall shear stress twm is approxi- 

mately equal to ^  ;  but the maximum shear stress "£k in the 

roughness and turbulence zone, respectively, no longer takes 

place according to Equation (44).  Rather, near the disc a 

high shear stress occurs which, however, fades out soon with 

an increase of 1.  Finally, with sufficiently large disc dis- 

tances, the shear stress from a certain point on changes 

again as in a smooth tube, i.e.  t drops linearly from the wall 

(-C = T ) up to the tube center (V   = 0).  Thus, no average 

value can be substituted in Equation (16) for the differen- 

tial ratio Z   It which is identical with the expression f/H* . 
w   wo " 

For it follows from the structuring of Equation (16) that 

Nusselt numbers calculated with an average value of ^w and/or 

T /t   would be too large. 
w'  wo 

In summary it can be stated that only those disc-shaped 

inserts act just as wall roughnesses, the aperture ratio of which 

is m* = 0.64 and the referred distance of which is L'/K = 20. 

While the limit value of m* which separates the area of rough- 

nesses from that of turbulence inserts can shift in the case 

of other wall projections, the limit value of L'/K probably 

would remain equal.  More or less high wall projections which 

point into the flow can be considered to be roughnesses. 

Baffleplates, propeller-shaped inserts, helical metal strips 

and packing materials accordingly represent turbulence inserts. 

The concentric ring inserts assume a special position, since 

they act quite similar to pure wall projections in spite of 

the fact that they do not adhere to the tube wall. 

In conclusion reference should be made to the fact that 

it is difficult to attempt to differentiate roughnesses and 

turbulence inserts with the aid of the velocity distribution 

theory.  The velocity distribution in rough tubes can be 
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represented by means of an exponential equation as well as 

by means of a logarithmic formulation [4].  W. Nunner [l] 

and H. MBbius [19] have determined numerous velocity dis- 

tributions in tubes with disc-shaped inserts and for the 

most part have represented them satisfactorily by means of 

such theoretical interrelations.  However, some of these in- 

serts (especially those with large L'/K values) must be con- 

sidered turbulence inserts due to their effect on heat transfer. 

This inaccuracy is based on the fact that the velocity profile 

was usually measured in the center between two inserts and 

therefore has only limited significance.  However, in the 

center of the tube and near the tube wall, the exponential 

equations or the logarithmic formulations for velocity dis- 

tribution are no longer exactly valid, even in the case of 

genuine wall roughnesses.  Therefore it cannot be accurately 

decided on the basis of a measured velocity profile—even if 

it remains generally constant along the tube—whether the 

wall projections under consideration involve roughnesses or 

turbulence inserts.  The velocity profiles determined by the 

author for disc arrangements with K = 5 mm and 10 mm (m* = 

0.64 and 0.36 and L«/K*»10) no longer follow the cited 

theories by any means. 

7.  Comparison with Earlier Experimental Results 

The influence of turbulence promoters on heat transfer 

already has been investigated several times.  However, the 

results can only be evaluated insofar as the pressure loss 

is also known in addition to the heat transfer.  In the 

following the most important earlier studies are to be re- 

ferred to for the sake of comparison. 
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7.1  Experimental Results with Air Currents 

A. P. Colburn and W. J. King [31] permitted air to flow 

through a steel tube of 66 mm internal diameter and 900 mm 

length which was cooled externally by means of water in a 

countercurrent.  The air which had been preheated in an elec- 

tric furnace streamed into the experimental tube at 100 to 

300°C.  Data on the length of the intake section are not 

available.  A picture of the experimental arrangement leads to 

the conclusion, however, that the intake section was too short 

for a complete development of the turbulent velocity profile. 

This is probably the main reason for the fact that the pres- 

sure loss and the coefficient of heat transfer were about 307.. 

higher in the smooth tube than was to have been expected 

(Figs. 61 and 62).  The experimental range extended from about 

Re = 3000 to 9000 (with Re according to Equation 26). 

No accurate data are available on the dimensions of the 

turbulence promoters which were utilized.  The data cited in 

the following are estimated values derived from a photograph 

of the turbulence inserts :  Inserts No. 1 and No. 3 were 

helically twisted metal strips of 66 mm width with h/d » 7 and 

h/d^ö, respectively; insert No. 9 was a propeller similar in 

type to that described in the above experiments with L'/d^l. 

The fact that the experimental conditions deviate some- 

what must be taken into account in a comparison of the Nu,Re 

curves for these inserts Nos. 1, 3 and 9 with the new results. 

Generally it is found that the Nu and  ^-measuring values of 

A. P. Colburn and ¥. J. King both for the smooth tube as well 

as for the inserts are about 20 to 307. higher throughout than 

7) The number of inserts agrees with that which was cited 

in the original study [31]. 
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Experiments according to A. P. Colburn [31] 
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Figs. 61 and 62.—Comparison of the average Nusselt 

numbers Nu and the coefficients of resistance S* for propeller 

and helically twisted inserts with the experimental results 

of A. P. Colburn and W. J. King [31].  a to c = the author's 

own experiments for the smooth tube, a metal twist of h/d = 5 

(h = pitch, d = tube diameter) and for propeller inserts of 

L'/d = 1 (L* = distance between propellers); Inserts Nos. 1 

and 3 correspond to a metal twist of h/d = 7 and 6, respec- 

tively, and insert No. 9 corresponds to propellers with 

L'/d = 1. 
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the new determinations.  Basically, however, the path of the 

curves for the compared inserts within the small Re-range 

investigated by A. P. Colburn and W. J. King agrees quite 

well with the comparison curves. 

J. Evans and R. J. Sarjant [32] conducted investigations 

with an experimental arrangement similar to the one described 

just above (internal diameter of experimental tube--76 mm, 

length—2.44 m, intake section—10 d).  Among others, helically 

twisted metal strips of 63.5 mm width <L and 2.13 m length 

also served as turbulence promoters.  Thus the strips were less 

underdimensioned in comparison to the experimental tube and 

were shorter than the heated section of the tube.  Eight dif- 

ferent metal spirals were investigated having reference 

pitches h/cl  of about 6 to 20.  The experimental range ex- 

tended from Re« 3000 to # 10,000. 

On the basis of the data of J. Evans and R. J. Sarjant, 

the experimental results for the smooth tube agree satisfac- 

torily with the known theoretical relationships.  Since de- 

terminations were carried out at high gas temperatures, the 

heat current transmitted by metal spirals by radiation is 

considered separately by J. Evans and R. J. Sarjant as these 

could also provide pure convection values.  No accurate data 

are available on prevailing temperatures (up to 480°C), so 

that it was not possible to determine the material magnitudes 

as necessary for a dimensionless representation.  However, J. 

Evans and R. J. Sarjant cite the magnification factors for 

the coefficient of heat transfer and the pressure loss com- 

pared to the values for the smooth tube as a function of the 

pitch of the metal spirals.  Presumably the magnification 

factors represent average values over the entire Re-range. 
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If approximately equal reference temperatures are assumed 

in the smooth tube and in tubes with inserts, then the data 

of J. Evans and R. J. Sarjant can be compared with the new 

experimental results (Fig. 63).  While the T/Y  , h/d0 curve o    tJ 

from these authors agrees to some extent with the corresponding 

curves from the new measurements, the Nu/Nu  values from the o 

earlier determinations are lower.  The deviations presumably 

can be explained by the fact that J. Evans and R. J. Sarjant 

utilized metal spirals which were more narrow and shorter in 

relation to the dimensions of the experimental tube than in 

the case of the new measurements. 

R. Schumacher [21] classified numerous experimental re- 

sults which were obtained with packed tubes traversed by a 

gas flow and demonstrated that the Nusselt numbers, quite in- 

dependent of the size and type of packing material, are found 

in a range which is delimited by the curves a and b as drawn 

in Fig. 64.  The internal diameter of the packed tube (not 

perchance the particle diameter) is to be substituted as the 

reference magnitude in Re and Nu in this one-sided representa- 

tion.  The new measuring values for packed tubes confirm 

these data by R. Schumacher very well. 

The limiting curves a and b each exhibit two breaks, the 

position of which admittedly can be easily changed, since the 

true Nu,Re curves do not have breaks, but rather have a more 

or less curved path.  R. Schumacher assumes that the heat 

transfer determinations in packed tubes which are traversed 

by a gas flow can also be transposed to other flow media. 

However, this is probably permissible only under certain re- 

strictions for reasons which have already been mentioned. 

In the determinations of H. Rietschel [33] a pipe line 

of large cross section was provided with a steam-heated space 
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a = course corresponding to [32]; 

b and c = course corresponding to 
the new determinations for a 
Reynolds number Re = 10^ and 
4*10 , respectively. 

mm*        6     8   10        15    20 
"j ^       Referred pitch h/dt 

Fig. 63.—Comparison of the referred coefficients of 

resistance 'f/'jf    and the referred average Nusselt numbers 

Nu/Nu  with the experimental results of J. Evans and R. J. 
'  o l 

Sarjant [32] for helically twisted inserts. 
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heater of equal diameter which was shielded from the bordering 

tube parts by an insulating screen.  The heater contained five 

tubes which were located parallel to the axis of the pipeline 

and which were welded into the pipe floor, and which were 

traversed by a flow of cold air.  The tubes had a diameter of 

70 mm and a length of 1 m.  Different turbulence promoters 

were located in front of the tubes, the shapes of which are 

illustrated in Figs. 65 a to f.  The turbulence producers 

were arranged in such a manner that their cylindrical part 

fitted smoothly to the tube wall. 

The Nu values calculated from the reported experimental 

values for the smooth tube agree very well with the known 

theoretical relationships, if the intake effects of the hydro- 

dynamically and thermally undeveloped flow are taken into 

consideration.  However, the values, which have not been 

represented in a dimensionless manner, have been partly 

extrapolated to excessively small velocities.  A comparison 

of the measured pressure losses with the new experimental 

values was not possible, because uncontrollable intake losses 

due to contraction, separations and transformations of the 

velocity profile, as well as outlet losses due to pressure 

drop occurred in H. Rietschel's determination. 

G. Grass [34,35] discussed heat transfer in a tube of 

40 mm diameter which was traversed by air flow and externally 

heated by steam.  The air arrived in the experimental tube 

directly from the surroundings; the tube could be provided 

with different intake arrangements and/or disc-shaped inserts. 

There was no intake section.  The steam jacket of the experi- 

mental tube exhibited many little chambers along the tube axis 

from each of which the condensate drained individually.  Thus, 

the heat flow transmitted to a certain section of the tube 

could be determined. .,„ 



It) b) 

c) 

d) 

e) 

f) 

!Fh774.65 tt-f I 

Figs. 65 a to f.--Turbulence producers according to 

H. Rietschel [33],  a = direction of flow; b = tube; c = 

turbulence producer; d = cylindrical part of the turbulence 

producer; a) = baffleplate; b) cylindrical double cone; 

c) metal sheet as turbulence producer obliquely inclined at 

65°; d) top view onto c); e) metal sheet as turbulence pro- 

ducer obliquely inclined at 38°; f) top view onto e). 
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First G. Grass investigated the effect of the type of 

intake on the course of the heat transfer coefficient along 

the tube [34].  Further determinations [35] were to clarify 

the extent to which inserted discs increase the heat transfer 

in the tube.  In this case the tube diameter amounted to 67 mm. 

The discs had an aperture ratio m* = 0.35 and 0.8, respec- 

tively, and were rounded off.  Unfortunately data are lacking 

on their width and on the manner in which they were mounted 

to the tube wall.  The first section of the experimental tube 

of 12 d length remained always free from inserts; then there 

were two or three discs, respectively, at distances of 4 to 

12 d.  This corresponds to L«/K values of about 7 6 to 230 at 

m* = 0.8, and of about 20 to 60 at m* = 0.35, respectively. 

G. Grass compared the heat transfer coefficients deter- 

mined for the disc inserts to those which are valid at the 

same Reynolds number for a smooth tube with hydrodynamically 

and thermally developed flow.  Here G. Grass found the heat 

transfer coefficient with discs to increase twice as much as 

was found in the new experiments.  Probably this great dif- 

ference is due to the fact that the tube intake as well as the 

discs themselves in the experimental arrangement of G. Grass 

caused additional intake effects.  According to G. Grass, the 

most favorable disc distance L* is at approximately 8 d. 

Disc distances < 6 d he considers uneconomical.  This is in 

contrast to the experimental results of \f. Nunner [l] and to 

the new experimental results.  The data of G. Grass are not 

sufficient for a comparison of the pressure loss. 

7.2  Experimental Results with a Water Flow 

Z. Nagaoka and A. Watanabe [36] allowed water to flow 

through a tube of 27 mm diameter and 1.7 m length which was 

externally heated with oil in direct current.  The inlet sec- 
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tion had a length of 37 d.  Only the experimental results 

which are valid for propeller inserts shall be discussed 

here.  Other findings by Z. Nagaoka and A. Watanabe for 

wire inserts have already been treated in greater detail by 

¥. Nunner [l].  The propeller-shaped inserts were well struc- 

tured from the flow-technological point of view.  The core of 

8 mm diameter which was structured as a hub contained twisted 

foils and snake-like, coiled fins.  Table 7 provides a short 

summary. 

Table 7 

Propeller-shaped Inserts According to Z. Nagaoka 
and A. Watanabe [3 6] 

Approximate Angle 
of Discharge t< 

Inserts        Foils i^«.c*«..=>       ^g Tube  Axis 
Number of     Number of       „ of Discharge to Remarks 

3 4 63° 
4 1 c.  ,  . . . 63° 
5 3 Single twist 750 

6 3 75° 

7 1 Double twist 75° 

At the beginning of the experimental tube there was only 

one propeller-shaped insert.  The referred propeller distance 

corresponded to about L'/d = 63 and thus was more than three 

times as large as the widest propeller spacing according to 

Section 4.4. 

In the measuring range of Re «4* 10  to 2" 10  which was 

investigated the values for the smooth tube agree completely 

with the known theoretical relationships (Figs. 66 and 67). 

The results for the propeller-shaped inserts can be very well 

represented by curves which are only slightly less inclined 

in their path than curve a for the smooth tube.  All Y and 

Nu values are lower than for the most widely spaced propeller 
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Fig. 66. —Result of the pressure loss measurements. 
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Fig. 67.—Result of the heat transfer measurements. 

Figs. 66 and 67.--The coefficient of resistance *f and the 

average Nusselt number Nu as functions of the Reynolds number 

Re for propeller-shaped inserts corresponding to measurements 

by Z. Nagaoka and A. Watanabe [36],   a = course for the 

smooth tube; the digits at the remaining curves refer to the 

number of the inserts corresponding to Table 7. 
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arrangement according to Section 4.4.  A detailed comparison 

of results according to Figs. 66 and 67 with the new deter- 

minations is not possible, since the shape of the propeller 

inserts and the Prandtl number of the flow media utilized in 

the two cases are too different from each other.  The experi- 

mental values of Z. Nagaoka and A. Watanabe are considered 

more closely later in Section 8.2. 

8.  Economy of Turbulence Inserts 

The design of a heat transmitter usually includes the 

problem with respect to a given material flow of supplying 

or removing a certain flow of heat in the most economical 

manner.  Thus the most favorable relation must be found be- 

tween the type and size, and thus the cost, of the heat 

transmitter on one hand, and the procurement and operating 

costs of the blower installation, which serves for the trans- 

port of the flow medium, on the other hand.  For tubes as 

transport areas through which flow passes longitudinally, the 

heat transfer in the tubes can be increased by means of the 

installation of turbulence promoters.  However, with these 

the pressure loss increases simultaneously as well as the 

transport efficiency of the blower.  Consequently, various 

construction types of a heat transmitter must be investigated 

with respect to their economical properties, in order to find 

the optimum design for the particular given conditions.  Two 

methods in which the variable costs for the heat transfer 

areas can be taken into consideration unobjectionably, seem 

particularly suited for such an evaluation on the basis of 

general points of view. 

8.1  Evaluation Method According to 0. Walger 

0. Walger [2,37] referred to the fact that as yet equal 
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Reynolds numbers do not represent a useable basis for a cri- 

tical comparison of heat transmitters, since differing geo- 

metrical forms of the transmission planes under certain cir- 

cumstances lead to different Reynolds numbers under equal 

conditions of operation.  In contrast, he assumes the equi- 

valence of the material flow, of the heat floi^ and of the 

pressure drop for the heat transmitters which are to be 

evaluated.  Undisturbed longitudinal flow through a smooth 

tube serves as the basis of comparison for flow through tubes 

with inserts.  According to 0. Walger, a Reynolds number Re' 

is determined for the tubes with inserts from the measuring 

values; this Re« results in equal operating conditions 

(i.e. equal transmitted heat flow at equal pressure loss) in 

flow through a smooth tube as the tube with inserts at a 

Reynolds number Re.  The ratio L/L  of the total expense of 
' o x 

tube length for the tube with inserts of length L and for 

the smooth tube of length L  approximately represents the 

cost relation of the two heat transmitters and is inversely 

proportional to the ratio of the Nusselt numbers which cor- 

respond to the Reynolds numbers Re and Re'. 

H. Glaser [38] already formulated an evaluation procedure 

previous to 0. Walger which was based on almost the same funda- 

mental assumptions, but which appears in an entirely different 

form externally.  In the following the method of H. Glaser 

which basically does not differ from that of 0. Walger will be 

described in greater detail and applied to the experimental 

results. 

8.2  Evaluation Procedure According to H. Glaser 

The economy of turbulence promoters can also be judged 

in comparison to smooth tubes without special restrictions 
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if, according to H. Glaser [38], the heating area requirement 

is determined as a function of an efficiency coefficient 

£= Q/N, where Q is the transported flow of heat and N the 

blower and/or pump output necessary for the transport of the 

flow medium.  An efficiency coefficient  ^ =  L//\t is 

appropriately utilized, i.e. the flow of heat referred to 

the transport efficiency and to a temperature interval of 

1° between the wall and the flow medium.  Thus, an equal 

efficiency coefficient means an equal output expenditure 

for the transport of a certain heat flow to a given material 

flow.  With this it can be easily determined which type of 

heating area will be the smallest necessary for a chosen or 

fixed efficiency coefficient.  At an equal tube diameter for 

all cases, the required tube length L or the particular re- 

quired heating area H is directly equal in proportion.  Then 

only the different costs per unit of heating area must still 

be taken into consideration.  However, the turbulence inserts 

which have been investigated do not  increase essentially 

the total costs of a heat transmitter. 

It should still be noted that in the cases under con- 

sideration here the same efficiency coefficients are provided 

with different rates of flow and thus different Reynolds 

numbers.  Consequently, a relationship exists between the 

required heating area H  and the required free flow cross 

section referred to the mass weight rate of flow f* = f/G 

(where f is the free flow cross section and G the mass 

weight rate of flow).   With increasing £. , the particular 

Reynolds number of the corresponding heat transmitter decreases. 

Fig. 68 shows the required heating area H as a function 

of £  for the smooth tube and for tubes with those disc inserts 

which had been found to be especially favorable among the 
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Figure 63 

The required heating area H as a function of the effi- 

ciency coefficient t    for the experimental tube containing 

disc-shaped inserts.  aQ = smooth tube; b, f and k refer to 

the classifications with the same designations corresponding 

to Table 1. 
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for the experimental tube containing disc-shaped inserts. 
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classifications corresponding to Table 1. 
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disc inserts under investigation.  It can be recognized that 

over a wide range the heating area requirement is far lower 

for the tubes provided with discs than for the smooth tube. 

The smaller the height K of the discs, the more favorable is 

their effect if the efficiency coefficients are hot too large. 

At £ = 1 degree" , the heating area requirement for discs with 

K = 2 mm only amounts to 70% of that for the smooth tube, 

while it amounts to about 857. for higher K values.  With 

increasing £. the advantage offered by discs with K = 10 mm 

decreases visibly at first and finally becomes a disadvantage. 

For tubes provided with discs of K = 5 mm the greatest heating 

area savings are obtained (about 507.) at  £. =* 300 degree  . 

Partly these inserts have an especially favorable effect in the 

:1 change-over zone of the flow (fc *200 to ■* 2000 degree" ), 

since turbulence inserts further delay the fade-out of turbul- 

ence.  At very high k.   values (correspondingly small Re values), 

the smooth tube becomes more favorable again for every case, 

since the turbulence inserts at small Reynolds numbers increase 

only the pressure loss but not the heat transfer. 

In the case of a constant efficiency coefficient ^, 

the rate of flow w in tubes with turbulence promoters must 

be lower than in the smooth tube, since the pressure loss 

increases too much otherwise.  Therefore it is a requirement 

for the referred free flow cross section f* to be larger in 

tubes with turbulence promoters than in a smooth tube.  Fig. 

69 shows the course of H as a function of f• for the same 

arrangements as in Fig. 68.  The desired relationship between 

L.   and f» results from Figs. 68 and 69.  As can be expected, 

the required value of f is smallest for the smooth tube. 

In the other tubes it increases with increasing disc height K. 
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Fig. 70 shows the H, £ curves for the smooth tube and for 

tubes with an especially favorable arrangement of baffleplates, 

propellers and metal spirals as well as packing materials.  In 

narrow plate arrangements and plate diameters of 30 and 40 mm 

(curves d and e), the heating area requirements decreases to 

about 7 57o at small ^ values in comparison to the smooth 

tube.  With increasing t? (i.e. with decreasing rate of flow), 

the advantage of the plate inserts is lost more and more; at 

fcj^lOO degree"  and ^SJ 700 degree-1, the curves for the 

40 mm and 30 mm plates, respectively, run past the curve for 

the smooth tube. 

For an equal heating area requirement, L' = 980 mm for 

tubes with a propeller insert and h/d*5 for tubes with a 

twisted metal insert (coinciding curves f and g in Fig. 70). 

While at small L values this curve almost coincides with 

curve d for the 40 mm discs, a heating area requirement which 

is 407„ lower than in the smooth tube results over a large 

range at higher £ values in the case of propellers and twists. 

Tubes which are filled with 5 mm Raschig rings (curve b) 

exhibit a considerably more unfavorable behavior at all t 

values than the smooth tube.  In contrast, the tube with the 

16 mm Raschig rings (curve c) has almost the same low heating 

area requirement at low 8 values as the one provided with 

propellers, but with increasing £ it rapidly becomes more 

uneconomical. 

Fig. 71 shows the relation between H and f* for the same 

arrangements.  On the basis of Figs. 70 and 7 1 it follows here 

too that at a certain efficiency coefficient, the smallest 

referred free cross section f« applies to the smooth tube 

(greatest rate of flow); the highest f«value is required for 

the packed tubes. 
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Fig. 70.—Required heating area H as a function of the 

efficiency coefficient 4. for the experimental tube containing 

different types of turbulence inserts.  a = smooth tube; 

b and c = Raschig ring packing with 5 mm and 16 mm rings, 

respectively; d and e = baffleplate inserts consisting of 

plates of 40 mm diameter with a referred distance L'/d = 1*44 

and plates of 30 mm diameter with L'/d = 1.55, respectively; 

f = propeller inserts with L«/d = 19.6; g = metal twists with 

a referred pitch h/d = 5. 
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the free weight rate of flow cross section f» for the experi- 

mental tube containing different types of turbulence inserts. 
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The results shall be briefly summarized once more.  The 

discs, propellers and metal twists proved to be especially 

favorable types of inserts.  Discs with a large aperture ratio 

(m*'£0.85) are most advantageous in the case of high Reynolds 

numbers.  Within a certain range of t^   values corresponding 

to the change-over zone in the smooth tube, the discs with 

K = 5 mm (m*« 0.65) are still somewhat more favorable than the 

discs with K = 2 mm (m*;tf 0.85).  With respect to propeller 

inserts, the arrangement with the greatest propeller distance 

(L1 = 980 mm) exhibits no disadvantages whatsoever in compari- 

son to arrangements with a smaller spacing L*.  Propeller 

inserts at small t.   values (high Re values) are not as advan- 

tageous as discs with small m*.  The twisted metal strip 

(h = 5 d) exhibits a similarly favorable effect as in the case 

of propeller inserts.  On the other hand, the baffleplate 

turbulence promoters at no time attain the good values of 

discs.  Significant economic advantages in comparison to 

the smooth tube are only attained by the 40 mm plates with 

L'/d ■* 1.5 within a certain range.  Those packing materials 

which produce a largre pressure loss (e.g. the 5 mm Raschig 

rings) are considerably less economical than others which 

cause smaller pressure losses (e.g. 16 mm Raschig rings). 

With respect to tubes with packing materials reference should 

be made especially to the fact that the same magnitude of 

heating area does not correspond to equal costs for the heat 

transmitter, since the costs of the packing materials must be 

taken into account.  Consequently the evaluation again changes 

somewhat in favor of the smooth tube.  The same is true for 

all of the other inserts. 

Figs. 68 to 71 are only valid for a tube diameter 

d = 50 mm.  At greater d values the shift of the H, £. curves 
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is almost equidistant in the direction of higher H values, 

so that only the relationships for one tube diameter have to 

be examined.  However, if free convection still plays an addi- 

tional role, then the results cannot be simply transposed to 

tubes with different diameters. 

Fig. 72 shows the H,t  values according to the experiments 

of A. P. Colburn and W. J. King [31] which are only compared 

to each other, since A. P. Colburn and W. J. King obtained 

higher resistance coefficients and heat transfer coefficients 

for the smooth tube than would be expected on the basis of 

known theoretical interrelations.  The curve which has been 

drawn in is valid for the smooth tube.  Inserts No. 9 (pro- 

peller) and No. 8 (inner tube with metal strips in coiled 

arrangement) show the most favorable results.  Depending on 

the value of £., their heating area requirement is about 

25 to 5 57„ less than for the smooth tube.All of the other 

inserts also exhibit an advantage at higher £. values over 

the smooth tube.  However, the measuring values cannot be 

simply extrapolated for other efficiency coefficients (i.e. 

other Reynolds numbers); for in the case of propeller inserts 

and metal twists, for example, ~f  and Nu over increasing 

ranges no longer vary with Re according to a simple exponen- 

tial relation (compare Figs. 22 and 23 as well as 26 and 27). 

Curves a to c in Fig. 73 were calculated from the ex- 

perimental results of J. Evans and R. J. Sarjant [32]. 

Curve b for the metal twists with h/d_, = 5.6 to 9.6 practi- 

* 
cally coincide  and are about 307» lower than curve a for the 

smooth tube.  In comparison, the twist with the lowest number 

Translator's note:  This sentence is incorrectly stated 
in German;  either an omission or a typographical error is 
involved. 
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Fig. 72.--The required heating area H as a function of 

the efficiency coefficient i.   corresponding to experimental 

results of A. P. Colburn and W. J. King [31].  Smooth tube 

as well as inserts Nos. 1, 3 and 9 as in Figs. 61 and 62; 

inserts Nos. 7 and 8 = coiled metal strips mounted on a core 

tube having a referred pitch h/d^O.65 for a core tube dia- 

meter of 22 mm and h/d *M for a core tube diameter of 11 mm, 

respectively; insert No. 10 = cone-shaped wire spirals mounted 

on a rod with the smallest diameter of twist equal to the rod 

diameter and the largest diameter of twist equal to the tube 

diameter d (height of a wire cone approximately 2d). 
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of twists (curve c) is somewhat less favorable.  These 

results agree only very approximately with the new experi- 

mental values, as was to be expected on the basis of the 

comparison according to Fig. 63. 

Fig. 74 is based on the experimental results of H. 

Rietschel [33].  Curve a is clearly based on the hydro- 

dynamically developed flow; curve b is valid for the experi- 

mental tube of 1 m length including the intake and outlet 

disturbances.  In comparison to curve b, the heat transfer 

is increased more or less economically with all turbulence 

promoters, but curve f for the insert corresponding to 

Fig. 65e is in still more favorable position than curve a. 

The operating conditions on which curve b in Fig. 7 4 is based 

occur very frequently in practice.  While intake and outlet 

losses admittedly can increase the total pressure loss con- 

siderably, this is not true for the heat transfer to the same 

extent.  This is demonstrated by the difference between curves 

a and b.  These disadvantages with respect to a fully developed 

turbulent tube flow can be eliminated and even converted to 

economic advantages by means of the installation of suitable 

turbulence promoters. 

The results of Z. Nagaoka and A. Watanabe [36] have been 

applied in Fig. 75.  Accordingly, the propeller inserts in 

the range under investigation are almost generally less eco- 

nomical than the smooth tube.  Certainly this is mainly due 

to the fact that propellers with large angles of incidence 

and small numbers of vanes do not represent a favorable type 

of insert.  Presumably the excessively large referred pro- 

peller distance of L'/d**63 probably has an unfavorable effect 

because the swirling motion fades out earlier and thus influences 

the heat transfer only in a certain zone behind the propeller. 
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the efficiency coefficient i     corresponding to measuring 
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respectively); c to f = corresponding to inserts according 

to Figs. 65 a, b, c and e, respectively. 
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results of Z. Nagaoka and A. Watänabe [36].  Explanations as 

in Figs. 66 and 67. 
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For reasons discussed in Section 5, the effect of the turbulence 

promoters is not as good in the case of flow media with a 

high Prandtl number than at low Pr-values.  Therefore, the 

results obtained for water with a Prandtl number ten times 

that of air cannot be directly transferred to an air flow. 

8.3  Influence of Dirt Deposits on Heat Transfer 

Fouling of the heat transfer tubes occurs frequently in 

practice.  The dirt layer almost always has a low coefficient 

of thermal conductivity, decreases the cross section of flow 

and thus increases the average flow rate at the same weight 

rate of flow.  The heat resistance of the dirt layer and the 

increased flow rate (i.e. an increased heat transfer coeffi- 

cient) thus have a bad effect on the heat transmission.  R. 

Gregorig [39] demonstrated the circumstances under which a 

dirt layer does not yet have unfavorable consequences.  Due 

to the surface roughnesses of the dirt layer which increase 

the heat transfer coefficient still more, the results of an 

examination undertaken for smooth surfaces still shift somewhat. 

In the case of turbulence promoters, such simple conclu- 

sions cannot be drawn.  Dirt collects easily at the walls of 

tubes with disc-shaped inserts.  But the average rate of flow 

increases hardly or not at all due to such layers.  If, on the 

other hand, baffleplate or propeller inserts are utilized for 

turbulence promoters, then similar effects as in the smooth 

tube presumably result due to a dirt deposit. 

9.  Summary 

In a smooth tube into which different passive turbulence- 

producing arrangements had been introduced (discs, rings, 

baffleplates, propellers, helically twisted metal strips, and 

packing materials) the pressure loss and the heat transfer 
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were determined in the range of Reynolds numbers Re**500 to 

80,000 both without as well as with the inserts.  The known 

theoretical interrelationships for pressure loss and heat 

transfer in a smooth tube were quite valid for the experimental 

tube.  With respect to tubes with inserts, both the Nusselt 

number as well as the coefficient of resistance, which are 

always greater for a certain Reynolds number than in the smooth 

tube, depend on the type and arrangement of the inserts in an 

unclear manner. 

In the discs under investigation having aperture ratios 

m* 7*0.25 to 0.85, maximum values of the pressure loss and the 

heat transfer occurred for a certain aperture ratio m* in the 

range 4000 = Re = 80,000 at disc distance L'-^IO K (where K 

is the disc height).  In the case of baffleplate inserts under 

the same conditions (0.36 = m* = 0.84), a maximum for the 

pressure loss could only be determined at a plate distance 

L'^0.9 dg (where dg is the plate diameter). 

With respect to propeller inserts, a decrease of the 

pressure loss and the heat transfer resulted with increasing 

distance L'; a simple relation to distance L', however, could 

not be recognized.  With metal twists, the pressure loss and 

the heat transfer were lower with increasing pitch h.  If a 

pitch h smaller than about five tube diameters d is selected, 

then the heat transfer presumably no longer increases signi- 

ficantly in comparison to the value at h/d = 5. 

The highest values of pressure loss and heat transfer 

occurred in the tubes filled with packing materials (heat trans- 

fer in the turbulent range at constant Reynolds number approxi- 

mately seven to eight times as high; pressure loss depending 

on the type of packing 600 to 10,000 times as high as in the 

smooth tube). 
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Measurements of the velocity and temperature distributions 

as well as of the wall shear stress in the smooth tube and 

in the tube with inserts resulted in valuable insight into 

the mechanism of heat transfer in the presence of turbulence 

producers.  Here it was found that the wall shear stress 

produced by the wall friction of the flow medium decisively 

characterizes the heat transfer.  With the aid of the average 

wall shear stress it was possible to represent the heat trans- 

fer for all baffleplate inserts as well as for several other 

turbulence producers by means of a curve.  The intensity of 

turbulence mainly influences the heat transfer in that it 

causes the wall shear stress to increase.  Furthermore, it 

could be concluded from these determinations that turbulence 

producers do not increase the heat transfer as much in the 

case of flow media with high Prandtl numbers as with th \se 

having a lower Prandtl number. 

A consideration of economy factors gives information on 

how the correct selection and arrangement of turbulence inserts 

can result in economic advantages over the smooth tube. 
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